Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
доп. вопросы(физика).docx
Скачиваний:
67
Добавлен:
15.03.2015
Размер:
1.52 Mб
Скачать

9) Классификация магнетиков. Магнитные свойства атомов

Магнетики – так называются вещества в магнетизме. Это связано с тем, что все без исключения вещества в той или иной степени влияют на магнитное поле, ослабляя или усиливая его.

На рис. 39 представлена схема опыта по изучению действия магнитного поля на различные вещества [7]. Сравнение показаний динамометра до и после включения постоянного тока в соленоиде указывает на три возможных типа взаимодействия.

Первый тип взаимодействия: относительно слабое втягивание магнетика в область более сильного поля. Такие вещества называются парамагнетиками. К парамагнетикам относятся, например, алюминий, платина, натрий, хлористая медь, жидкий кислород и др.

Второй тип взаимодействия: относительно слабое выталкивание магнетика в область менее интенсивного поля. Эти вещества называются диамагнетиками. К ним относятся медь, серебро, висмут, углерод, вода, жидкий азот и др.

Третий тип взаимодействия: для веществ этого класса наблюдалось втягивание в область более сильного поля, и их можно было бы, формально, отнести к первому типу взаимодействия. Однако эффект в тысячи, десятки тысяч раз превосходит силы, наблюдавшиеся для парамагнетиков и диамагнетиков. Эти вещества называются ферромагнетиками. К ним относятся, например, железо, кобальт, никель и др.

Почему же вещества по-разному взаимодействуют с магнитным полем? Естественно предположить, что то или иное взаимодействие магнетиков с магнитным полем обусловлено магнитными свойствами атомов. Еще в начале XIX столетия Ампер выдвинул гипотезу молекулярных токов, согласно которой каждому атому (молекуле) можно сопоставить некоторый круговой ток с соответствующим магнитным моментом. В современной физике магнитный момент атома рассматривается как суммарный магнитный момент, связанный с орбитальным движением электронов вокруг ядра, собственным магнитным моментом электронов и с магнитным моментом ядра:

, (3.1)

где Z – число электронов в атоме; – суммарный магнитный момент атома; – орбитальный магнитный моментi-го электрона, обусловленный движением электрона вокруг ядра; – собственный магнитный моментi-го электрона; – суммарный магнитный момент ядра, обусловленный магнитными моментами входящих в состав ядра протонов и нейтронов.

Как показывает опыт, магнитный момент ядра мал по своей величине, и им можно пренебречь по сравнению с магнитными моментами электронов, считая, что магнитный момент атома равен векторной сумме орбитальных и собственных магнитных моментов электронов.

Рассмотрим движение электрона по круговой орбите радиуса вокруг ядра как круговой контур с током (рис. 40). Если электрон за одну секунду делаетоборотов, то сила тока в таком контуре

где – модуль заряда электрона;– циклическая частота. Тогда для орбитального магнитного момента такого контура площадьюполучаем

. (3.2)

Направление тока I противоположно скорости электрона так как заряд электрона – отрицательный (рис. 40).

Здесь уместно ввести понятие гиромагнитного отношения – отношения орбитального магнитного момента электронак его орбитальному моменту импульса:

. (3.3)

Момент импульса (момент количества движения) был определен в разделе «Механика» [6]:

, (3.4)

где m – масса электрона. Вектор направлен противоположно вектору(рис. 40).

Как видно из (3.2)–(3.4), связь между векторами иможно выразить в виде

, (3.5)

где гиромагнитное отношение для орбитального движения электрона

. (3.6)

Из (3.6) следует, что гиромагнитное отношение не зависит от параметров орбитального движения электрона и для всех электронов одинаково.

Электрон обладает также собственным магнитным моментом и собственным моментом импульса. Последний называют также спином. Соответственно собственный магнитный момент называют спиновым магнитным моментом. Собственные моменты электрона имеют квантовую природу и являются такими же неотъемлемыми его характеристиками, как масса и заряд. Опыт показывает, что собственный магнитный и механический моменты электрона связаны соотношением

,(3.7)

где – гиромагнитное отношение для этих моментов. Рассмотренные ранее орбитальные моменты могут различаться для разных электронов атома. В отличие от них величины собственных магнитных моментоводинаковы у всех электронов, это же справедливо и для собственных механических моментов. Например, они одинаковы у свободного и у связанного в атоме электронов.

В атоме (молекуле) векторная сумма орбитальных и собственных магнитных моментов электронов равна полному магнитному моменту атома (молекулы). Вследствие этого атомы (молекулы) можно рассматривать как микроскопические круговые контура с током, получившие в физике название молекулярных токов Ампера.

Как показывает опыт, для парамагнетиков и ферромагнетиков суммарный магнитный момент атомов (молекул) отличен от нуля. Для диамагнетиков при отсутствии магнитного поля он равен нулю. Явления парамагнетизма, диамагнетизма и ферромагнетизма будут рассмотрены соответственно в подразд. 3.2, 3.3 и 3.5.

10) ) Явление интерференции Интерференция волн возможна только при выполнении условия когерентности. Слово когерентность означает согласованность. Когерентными называются колебания с одинаковой частотой и постоянной во времени разностью фаз. 

 Интерференция волн - явление, наблюдающееся при одновременном распространении в пространстве нескольких волн и состоящее в стационарном ( или медленно изменяющемся) пространственном распределении амплитуды и фазы результирующей волны.

Интерференция волн - это явление усиления или ослабления колебаний, которое происходит в результате сложения двух или нескольких волн с одинаковыми периодами, распространяющихся в пространстве, и зависит от соотношения между фазами складывающихся колебаний.

Волны — один из двух путей переноса энергии в пространстве (другой путь — корпускулярный, при помощи частиц). Волны обычно распространяются в какой-то среде (например, волны на поверхности озера распространяются в воде), однако направление движения самой среды не совпадает с направлением движения волн. Представьте себе поплавок, покачивающийся на волнах. Поднимаясь и опускаясь, поплавок повторяет движения воды, в то время как волны проходят мимо него.

Явление интерференции происходит при взаимодействии двух и более волн одинаковой частоты, распространяющихся в различных направлениях. При этом оно наблюдается и у волн, распространяющихся в средах, и у электромагнитных волн  То есть интерференция является свойством волн как таковых и не зависит ни от свойств среды, ни от ее наличия. Чтобы понять ее механизм, проще всего вернуться к примеру волн на водной поверхности и представить себе, что каждая волна несет в себе инструкцию для элементов поверхности, например «подняться на 1 метр» или «опуститься на 30 см». В точке взаимодействия двух волн поверхность просуммирует две такие инструкции — в данном примере, она поднимется на 70 см (1 метр минус 30 см).

Самое поразительное происходит в точке встречи двух волн равной амплитуды, достигших места встречи в противофазе (то есть когда пик максимума амплитуды одной волны накладывается на пик минимума амплитуды другой). В таком случае, условно говоря, одна волна передает поверхности инструкцию «подняться на 1 м», а другая — «опуститься на 1 м», в результате чего поверхность воды просто остается на месте. В этом случае на воде мы наблюдаем точку штиля. В акустике — мертвую точку. В оптике — точку полного затемнения. Это явление называется интерференционным гашением волн, или деструктивной интерференцией.

Возможна и прямо противоположная ситуация, когда две волны встречаются в точке совпадения фаз, и амплитуды колебаний среды складываются (при равной амплитуде встретившихся волн, например, амплитуда линейных колебаний среды удвоится). Это явление называется интерференционным усилением волн, иликонструктивной интерференцией. Волны на поверхности воды в таких точках будут самыми высокими, звуки — самыми громкими, свет — самым ярким. Естественно, имеется множество промежуточных значений интерференционной амплитуды колебаний, лежащих в пределах от полностью конструктивной до полностью деструктивной интерференции, которые образуют причудливую и в то же время упорядоченную интерференционную картину взаимодействия волн.