Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
AVR / datasheets / attiny_28L_28V.pdf
Скачиваний:
36
Добавлен:
20.03.2015
Размер:
746.49 Кб
Скачать

 

 

 

 

 

 

 

 

ATtiny28L/V

 

 

 

 

 

 

 

 

 

Electrical Characteristics

 

 

 

 

 

 

 

 

 

 

 

Absolute Maximum Ratings

 

 

 

 

 

 

*NOTICE: Stresses beyond those ratings listed under

 

Operating Temperature.............................

-40°C to +85/105°C

 

 

 

 

 

 

 

“Absolute Maximum Ratings” may cause perma-

 

Storage Temperature .....................................

-65°C to +150°C

nent damage to the device. This is a stress rating

 

 

 

 

 

 

 

only and functional operation of the device at

 

Voltage on Any Pin except

RESET

 

 

these or other conditions beyond those indicated

 

with Respect to Ground .............................

-1.0V to VCC + 0.5V

in the operational sections of this specification is

 

Maximum Operating Voltage

6.0V

not implied. Exposure to absolute maximum rat-

 

ing conditions for extended periods may affect

 

Voltage on

 

with Respect to Ground -1.0V to +13.0V

device reliability.

 

RESET

 

 

 

DC Current per I/O Pin, except PA2 ...........................

40.0 mA

 

 

 

DC Current PA2 ..........................................................

60.0 mA

 

 

 

DC Current VCC and GND Pin.................................

300.0 mA

 

 

 

 

 

 

 

 

 

 

 

DC Characteristics

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)

Symbol

Parameter

Condition

 

 

 

Min

Typ

Max

Units

 

 

 

 

 

 

 

 

 

 

VIL

Input Low Voltage

(Except XTAL)

 

 

 

-0.5

 

0.3 Vcc(1)

V

VIL1

Input Low Voltage

XTAL

 

 

 

-0.5

 

0.1 Vcc(1)

V

 

 

 

 

 

 

 

 

(2)

 

 

 

VIH

Input High Voltage

(Except XTAL, RESET)

 

VCC + 0.5

V

0.6 VCC

 

VIH1

Input High Voltage

XTAL

 

 

 

(2)

 

VCC + 0.5

V

 

 

 

0.7 VCC

 

VIH2

Input High Voltage

RESET

 

 

 

(2)

 

VCC + 0.5

V

 

 

 

0.85 VCC

 

VOL

Output Low Voltage(3)

IOL = 20 mA, VCC = 5V

 

 

0.6

V

 

Ports A, D

IOL = 10 mA, VCC = 3V

 

 

0.5

V

VOL

Output Low Voltage(3)

IOL = 25 mA, VCC = 2.0V

 

 

1.0

V

 

Port A2

 

 

 

 

 

 

 

 

 

V

V

Output High Voltage(4)

I

OH

= -3 mA, V

 

= 5V

4.3

 

 

V

OH

 

 

 

CC

 

 

 

 

 

Ports A, D

IOH = -1.5 mA, VCC = 3V

2.3

 

 

V

IIL

Input Leakage Current I/O Pin

VCC = 5.5V, pin low

 

 

8.0

µA

 

 

(absolute value)

 

 

 

 

 

 

 

 

 

 

 

IIL

Input Leakage Current I/O Pin

VCC = 5.5V, pin high

 

 

8.0

µA

 

 

(absolute value)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RI/O

I/O Pin Pull-up

 

 

 

 

 

 

35.0

 

122.0

kΩ

 

 

Active Mode, VCC = 3V,

 

 

3.0

mA

 

 

4 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Idle Mode VCC = 3V, 4 MHz

 

1.0

1.2

mA

ICC

Power Supply Current

Power-down(5)(6), VCC = 3V

 

9.0

15.0

µA

 

 

WDT enabled

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power-down(5)(6), VCC = 3V

 

<1.0

2.0

µA

 

 

WDT disabled

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

53

1062G–AVR–01/06

DC Characteristics (Continued)

TA = -40°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)

Symbol

Parameter

Condition

Min

Typ

Max

Units

 

 

 

 

 

 

 

VACIO

Analog Comparator Input

VCC = 5V

 

 

40.0

mV

 

Offset Voltage

VIN = VCC/2

 

 

 

 

IACLK

Analog Comparator Input

VCC = 5V

-50.0

 

50.0

nA

 

Leakage Current

VIN = VCC/2

 

 

 

 

TACPD

Analog Comparator

VCC = 2.7V

 

750.0

 

ns

 

Propagation Delay

VCC = 4.0V

 

500.0

 

 

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low.

2.“Min” means the lowest value where the pin is guaranteed to be read as high.

3.Although each I/O port can sink more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V) under steady-state conditions (non-transient), the following must be observed:

1] The sum of all IOL, for all ports, should not exceed 300 mA.

2] The sum of all IOL, for port D0 - D7 and XTAL2 should not exceed 100 mA. If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

4.Although each I/O port can source more than the test conditions (3 mA at VCC = 5V, 1.5 mA at VCC = 3V) under steady-state conditions (non-transient), the following must be observed:

1] The sum of all IOH, for all ports, should not exceed 300 mA.

2] The sum of all IOH, for port D0 - D7 and XTAL2 should not exceed 100 mA. If IOH exceeds the test condition, VOH may exceed the related specification.

Pins are not guaranteed to source current greater than the listed test conditions.

5.Minimum VCC for power-down is 1.5V.

6.When entering Power-down, PORTA2 bit in PORTA register should be set.

54 ATtiny28L/V

1062G–AVR–01/06

ATtiny28L/V

External Clock Drive Waveforms

Figure 40. External Clock

VIH1

VIL1

External Clock Drive

 

 

 

 

VCC = 1.8V to 2.7V

VCC = 2.7V to 4.0V

VCC = 4.0V to 5.5V

 

Symbol

Parameter

 

Min

 

Max

Min

Max

Min

 

Max

Units

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1/tCLCL

Oscillator Frequency

 

0.0

 

1.2

0.0

 

4.0

0.0

 

4.0

MHz

tCLCL

Clock Period

 

833.0

 

 

250.0

 

250.0

 

 

ns

tCHCX

High Time

 

333.0

 

 

100.0

 

100.0

 

 

ns

tCLCX

Low Time

 

333.0

 

 

100.0

 

100.0

 

 

ns

tCLCH

Rise Time

 

 

 

1.6

 

 

1.6

 

 

0.5

µs

tCHCL

Fall Time

 

 

 

1.6

 

 

1.6

 

 

0.5

µs

 

:

 

 

 

 

 

 

 

 

 

 

 

 

Table 25. External RC Oscillator, Typical Frequencies

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R [k]

 

 

 

C [pF]

 

 

 

f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100.0

 

 

 

70.0

 

 

 

100.0 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31.5

 

 

 

20.0

 

 

 

1.0 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5

 

 

 

20.0

 

 

 

4.0 MHz

 

 

 

 

 

 

 

 

 

 

Note:

R should be in the range 3 - 100 kΩ, and C should be at least 20 pF.

 

 

55

1062G–AVR–01/06

Typical

Characteristics

The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator with rail- to-rail output is used as clock source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors, such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency. The current drawn from capacitive loaded pins may be estimated (for one pin) as CL • VCC • f, where CL = Load Capacitance, VCC = Operating Voltage and f = Average Switching Frequency of I/O pin.

The parts are characterized at frequencies and voltages higher than test limits. Parts are not guaranteed to function properly at frequencies and voltages higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer.

Figure 41. Active Supply Current vs. Frequency

ACTIVE SUPPLY CURRENT vs. FREQUENCY

 

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 6.0V

 

14

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 5.5V

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 5.0V

(mA)

10

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 4.5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 4.0V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

VCC = 3.6V

 

 

 

4

 

 

 

 

 

 

 

 

 

VCC = 3.3V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 3.0V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

VCC = 2.7V

 

 

 

 

 

 

 

 

 

 

VCC = 2.1V

 

 

VCC = 2.4V

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 1.8V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Frequency (MHz)

56 ATtiny28L/V

1062G–AVR–01/06

ATtiny28L/V

Figure 42. Active Supply Current vs. VCC

ACTIVE SUPPLY CURRENT vs. VCC

ICC (mA)

FREQUENCY = 4 MHz

8

7

TA = 25˚C

6

TA = 85˚C

5

4

3

2

1

0

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 

 

 

 

VCC (V)

 

 

 

 

 

Figure 43. Active Supply Current vs. VCC, Device Clocked by Internal Oscillator

ACTIVE SUPPLY CURRENT vs. Vcc

DEVICE CLOCKED BY 1.2MHz INTERNAL RC OSCILLATOR

 

6

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 25˚C

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

(mA)

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cc

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Vcc(V)

57

1062G–AVR–01/06

Figure 44. Active Supply Current vs. VCC, Device Clocked by External 32 kHz Crystal

ACTIVE SUPPLY CURRENT vs. VCC

DEVICE CLOCKED BY 32 kHz CRYSTAL

 

4

 

 

 

 

 

 

 

 

 

 

3.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

2.5

 

 

 

 

 

 

 

 

 

(mA)

2

 

 

 

 

 

 

 

 

 

CC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

1.5

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

VCC (V)

Figure 45. Idle Supply Current vs. Frequency

ICC (mA)

IDLE SUPPLY CURRENT vs. FREQUENCY

TA = 25˚C

4.5

4

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 6.0V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 5.5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 5.0V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 4.5V

 

2

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 4.0V

 

1.5

 

 

 

 

 

 

 

 

 

 

 

VCC = 3.6V

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC = 3.3V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

VCC = 3.0V

 

 

 

 

 

 

 

 

 

 

 

VCC = 2.7V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

VCC = 2.4V

 

 

 

 

 

0

 

 

 

 

VCC = 2.1V

 

 

 

 

 

 

 

 

 

VCC

= 1.8V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Frequency (MHz)

58 ATtiny28L/V

1062G–AVR–01/06

ATtiny28L/V

Figure 46. Idle Supply Current vs. VCC

IDLE SUPPLY CURRENT vs. VCC

FREQUENCY = 4 MHz

 

1.4

 

 

 

 

 

 

 

 

 

 

1.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

1

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

(mA)

0.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

0.6

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

VCC (V)

Figure 47. Idle Supply Current vs. VCC, Device Clocked by Internal Oscillator

IDLE SUPPLY CURRENT vs. Vcc

DEVICE CLOCKED BY 1.2MHz INTERNAL RC OSCILLATOR

 

0.7

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

 

 

(mA)

0.3

 

 

 

 

 

 

 

 

 

cc

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Vcc(V)

59

1062G–AVR–01/06

Figure 48. Idle Supply Current vs. VCC, Device Clocked by External 32 kHz Crystal

IDLE SUPPLY CURRENT vs. VCC

DEVICE CLOCKED BY 32 kHz CRYSTAL

 

30

 

 

 

 

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

 

 

(µA)

 

 

 

 

 

 

 

 

TA = 25˚C

 

15

 

 

 

 

 

 

 

 

 

CC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

VCC (V)

Figure 49. Power-down Supply Current vs. VCC

ICC (µA)

POWER-DOWN SUPPLY CURRENT vs. VCC

 

WATCHDOG TIMER DISABLED

3

 

 

TA = 85˚C

2.5

 

2

 

1.5

TA = 70˚C

1

 

0.5

TA = 45˚C

 

 

TA = 25˚C

0

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 

 

 

 

 

VCC (V)

 

 

 

 

60 ATtiny28L/V

1062G–AVR–01/06

ATtiny28L/V

Figure 50. Power-down Supply Current vs. VCC

ICC (µA)

POWER-DOWN SUPPLY CURRENT vs. VCC

WATCHDOG TIMER ENABLED

70

60

50

TA = 25˚C

TA = 85˚C

40

30

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 

 

 

 

 

VCC (V)

 

 

 

 

Analog comparator offset voltage is measured as absolute offset.

Figure 51. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 5V)

 

18

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

(mV)

12

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

 

 

Voltage

10

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

Offset

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Common Mode Voltage (V)

61

1062G–AVR–01/06

Figure 52. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 2.7V)

 

10

 

 

 

 

 

 

 

 

 

 

 

 

TA = 25˚C

 

 

8

 

 

 

 

 

 

(mV)

6

 

 

 

 

 

 

Voltage

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

Offset

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

Common Mode Voltage (V)

Figure 53. Analog Comparator Input Leakage Current (VCC = 6V; TA = 25°C)

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(nA)

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACLK

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

VIN (V)

62 ATtiny28L/V

1062G–AVR–01/06

ATtiny28L/V

Figure 54. Calibrated Internal RC Oscillator Frequency vs. VCC

CALIBRATED RC OSCILLATOR FREQUENCY vs.

OPERATING VOLTAGE

 

1.28

 

 

 

 

 

 

 

 

 

1.26

 

 

 

 

 

 

TA = 25˚C

TA = 45˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 70˚C

 

1.24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

1.22

 

 

 

 

 

 

 

 

(MHz)

1.2

 

 

 

 

 

 

 

 

1.18

 

 

 

 

 

 

 

 

Rc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

 

1.16

 

 

 

 

 

 

 

 

 

1.14

 

 

 

 

 

 

 

 

 

1.12

 

 

 

 

 

 

 

 

 

1.1

 

 

 

 

 

 

 

 

 

2

2.5

3

3.5

4

4.5

5

5.5

6

Vcc(V)

Figure 55. Watchdog Oscillator Frequency vs. VCC

 

1600

 

 

 

 

 

 

 

 

 

 

1400

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

1200

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

(kHz)

1000

 

 

 

 

 

 

 

 

 

800

 

 

 

 

 

 

 

 

 

RC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

 

 

 

 

 

 

 

 

600

 

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

VCC (V)

63

1062G–AVR–01/06

Sink and source capabilities of I/O ports are measured on one pin at a time.

Figure 56. Pull-up Resistor Current vs. Input Voltage (VCC = 5V)

 

120

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

(µA)

 

60

 

 

 

 

 

 

 

 

 

 

OP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

VOP (V)

Figure 57. Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)

 

30

 

 

 

 

 

 

 

 

 

TA = 25˚C

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

 

 

 

20

 

 

 

 

 

 

(µA)

15

 

 

 

 

 

 

OP

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

VOP (V)

64 ATtiny28L/V

1062G–AVR–01/06

ATtiny28L/V

Figure 58. I/O Pin Sink Current vs. Output Voltage. All pins except PA2 (VCC = 5V)

 

70

 

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

TA = 85˚C

 

 

50

 

 

 

 

 

 

(mA)

40

 

 

 

 

 

 

 

 

 

 

 

 

 

OL

 

 

 

 

 

 

 

I

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

VOL (V)

Figure 59. I/O Pin Source Current vs. Output voltage (VCC = 5V)

 

20

 

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

 

 

 

 

 

 

 

 

 

 

 

16

 

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

 

 

 

(mA)

12

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

VOH (V)

65

1062G–AVR–01/06

Figure 60. I/O Pin Sink Current vs. Output Voltage, All Pins Except PA2 (VCC = 2.7V)

 

25

 

 

TA = 25˚C

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

TA = 85˚C

 

(mA)

15

 

 

 

 

 

 

 

 

 

OL

 

 

 

 

 

I

10

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

0

 

 

 

 

 

0

0.5

1

1.5

2

VOL (V)

Figure 61. I/O Pin Source Current vs. Output Voltage (VCC = 2.7V)

 

6

 

TA = 25˚C

 

 

 

 

 

 

 

 

 

 

 

 

5

 

TA = 85˚C

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

(mA)

3

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

VOH (V)

66 ATtiny28L/V

1062G–AVR–01/06

ATtiny28L/V

Figure 62. PA2 I/O Pin Sink Current vs. Output Voltage (High Current Pin PA2; TA = 25°C)

 

90

 

 

 

 

 

 

 

VCC = 3.6V

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

70

 

 

 

 

VCC = 2.4V

 

 

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

(mA)

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OL

40

 

 

 

 

 

 

 

 

I

 

 

 

VCC = 1.8V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

VOL (V)

Figure 63. I/O Pin Input Threshold Voltage vs. VCC (TA = 25°C)

 

2.5

 

 

 

2

 

 

(V)

1.5

 

 

Voltage

 

 

 

 

 

Threshold

1

 

 

 

 

 

 

0.5

 

 

 

0

 

 

 

2.7

4.0

5.0

VCC

67

1062G–AVR–01/06

Figure 64. I/O Pin Input Hysteresis vs. VCC (TA = 25°C)

 

0.18

 

 

 

0.16

 

 

 

0.14

 

 

(V)

0.12

 

 

Hysteresis

 

 

0.1

 

 

0.08

 

 

Input

 

 

0.06

 

 

 

 

 

 

0.04

 

 

 

0.02

 

 

 

0

 

 

 

2.7

4.0

5.0

VCC

68 ATtiny28L/V

1062G–AVR–01/06

Соседние файлы в папке datasheets