Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Поляризация ионов.doc
Скачиваний:
29
Добавлен:
24.03.2015
Размер:
337.92 Кб
Скачать

3. Цветность химических соединений

С эффектами поляризации связана цветность химических соединений как в твердых фазах, так и в растворах. Как известно, окраска химических соединений определяется долей непоглощенных лучей (квантов энергии) видимой части спектра. При полном поглощении всех лучей вещество имеет черную окраску, а при отсутствии поглощении – белую окраску. Кванты энергии, соответствующие частотам видимой части спектра, обладают сравнительно большой величиной. Поэтому способность к возбуждению (переходу на более отдаленные уровни энергии) при поглощении этих квантов энергии приобретают именно те электроны, которые теряют прочную связь с ядром. Подобная неустойчивость структуры внешнего квантового слоя ионизированных атомов возникает за счет эффектов поляризации.

Следовательно, все факторы, изменяющие поляризуемость и поляризующее действие ионизированных атомов в химических соединениях, должны оказывать влияние на цветность этих веществ. Действительно, между цветностью химических соединений и степенью устойчивости структуры внешних квантовых слоев ионизированных элементов, входящих в их состав, наблюдается определенный параллелизм.

Растворимость кристаллических веществ зависит также от эффектов поляризации. Двусторонняя поляризация ионизированных атомов в химическом соединении приводит к уменьшению постоянного дипольного момента ковалентной связи, полярность связи уменьшается. Обычно при этом уменьшается и растворимость веществ.

Односторонняя поляризация одного из ионизированных атомов в химическом соединении повышает полярность ковалентной связи, вплоть до перехода ее в ионную связь. Соответственно повышается растворимость вещества. Таким образом, изменение растворимости однотипных солей, при замене в них катионов ли анионов, позволяет ориентировочно судить о степени полярности связей между атомами элементов.

Поляризуемость и поляризующее действие весьма характерны для реальных и условных катионов d-элементов (переходных металлов), особенно для катионов, имеющих высокое значение положительного окислительного числа (Cr , Mn и др.).

Влияние эффектов поляризации на цветность химических соединений можно проиллюстрировать рядом примеров. Чем меньше радиус и больше заряд условных катионов в составе оксидов, образованных s- и d-электронами IV периода, при одинаковой электронной структуре их внешнего квантового соя, тем больше вероятность интенсивной окраски данного соединения.

Цветность оксидов элементов IV периода закономерно увеличивается в ряду:

K2O CaO TiO2 V2O5 Cr2O3 Mn2O7

бесцветный оранжевый темно-красный черно-зеленый

Реальные и условные анионы в составе химических соединений обладают высокой поляризуемостью, поскольку в структуре внешних квантовых слоев этих частиц имеются добавочные электроны. Поляризуемость возрастает с увеличением отрицательного заряда и радиуса анионов (см таблицу 5.1):

I> Br > Cl,

>O² >OH.

Поэтому окрашенность однотипных химических соединений, как правило, усиливается при увеличении радиуса и заряда входящих в его состав изоэлектронных анионов. Иодиды более окрашены, чем бромиды, хлориды и фториды. Сульфиды имеют более интенсивную окраску, чем оксиды, а оксиды – более интенсивную, чем гидроксиды.

Цветность солей в твердой фазе и в растворах зависит часто от взаимной поляризации ионов и полярных молекул растворителя. Так, например, безводная соль CuSO4 бесцветна, а водный раствор CuSO4. окрашен в голубой цвет за счет образования комплексного иона [Cu(H2O)4]². Еще интенсивнее окраска комплексного иона [Cu(NH3)4]² образующегося при добавлении концентрированного раствора аммиака в раствор CuSO4. Безводная соль имеет синюю окраску, а по мере увлажнения приобретает розовый цвет, присущий комплексному иону [Co(H2O)6]² и т.д.

Окраска многих комплексных соединений металлов семейства d обусловлена взаимной поляризацией компексообразователя (катиона металла) и лигандов (молекул H2O, NH3, ионов OH, CN и др.). Нагревание веществ способствует уменьшению устойчивости электронной структуры внешнего квантового слоя атомов и повышает взаимную поляризацию ионизированных атомов. Поэтому нагревание может способствовать повышению цветности соединений. Так, бесцветная окись цинка ZnO желтеет при нагревании. Желтая окраска комплексной соли Ag[HgI4] при нагревании до 38º C переходит в ярко-оранжевую.

Исследование поляризационных эффектов осуществляется на современном уровне науки путем сложных физических экспериментов. Однако, пользуясь зависимостью между цветностью химических соединений, а также их растворимостью и поляризационными эффектами, можно ориентировочно судить и о поляризуемости и поляризующем действии условных или реальных ионов в составе химических соединений.