Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник физиологии Косицкого / 008 ЦНС Регуляция.doc
Скачиваний:
261
Добавлен:
25.03.2015
Размер:
23.04 Mб
Скачать

Химические медиаторы

В ЦНС медиаторную функцию выполняет не одно, а большая группа разнородных химических веществ. Список вновь открываемых химических медиаторов неуклонно пополняется.

Чаще всего химическими медиаторами являются вещества с небольшой относитель­ной молекулярной массой. Однако и высокомолекулярные соединения, такие, как полипептиды, также способны выполнять роль химических передатчиков в ряде центральных и периферических синапсов.

Основным критерием медиаторной функции веществ является его наличие в соот­ветствующих пресинаптических окончаниях, способность высвобождаться под влиянием нервного импульса, а также идентичность молекулярных и ионных механизмов действия на постсинаптическую мембрану вещества, высвобождаемого нервным импульсом и при­кладываемого искусственно к постсинаптической мембране.

В противоположность многим периферическим структурам, где процесс идентифика­ции медиатора по указанным выше критериям может быть произведен сравнительно просто, ЦНС построена из негомогенных диффузно расположенных популяций нервных клеток и окончаний. Это вносит значительные трудности в обнаружение выделяемого медиатора, который, прежде чем появиться на поверхности мозга или в спинномозговой жидкости, должен диффундировать на большие расстояния. Помимо этого, в централь­ных структурах трудно добиться избирательной стимуляции определенной гомогенной группы нейронов или волокон, так же как трудно подводить предполагаемый медиатор к определенным нервным клеткам, не оказывая влияния на соседние нейроны. Именно поэтому природа химических медиаторов во многих синапсах ЦНС до сих пор оконча­тельно не установлена. Тем не менее выявлен ряд веществ, играющих роль медиаторов синаптического возбуждения и торможения в ЦНС млекопитающих и человека.

К ним относятся: ацетилхолин; катехоламины: адреналин, норадреналин, дофамин; серотонин: 5-гидрокситриптамин; нейтральные аминокислоты: глутаминовая, аспарагиновая кислоты; кислые аминокислоты: глицин, гамма-аминомасляная кислота (ГАМК); полипептиды: вещество Р, энкефалин, соматостатин и др.; другие вещества: АТФ, гистамин, простагландины.

Согласно принципу Дейла, каждый нейрон во всех своих синаптических окончаниях выделяет один и тот же медиатор. Поэтому принято обозначать нейроны по типу медиато­ра, который выделяют их окончания. Нейроны, освобождающие ацетилхолин, называют холинергическими, серотонин — серотонинергическими и т. д. Этот же принцип может быть использован для обозначения различных химических синапсов. Иными словами, различают холинергические, серотонинергические и другие синапсы.

Ацетилхолин. Ацетилхолин является уксуснокислым эфиром холина, т. е. относится к простым эфирам. Он образуется при ацетилировании холина, причем этот процесс происходит при участии фермента ацетилхолинтрансферазы. Особенностью ацетилхолина как медиатора является быстрое его разрушение после высвобождения из пресинапти­ческих окончаний с помощью фермента ацетилхолинэстеразы.

Ацетилхолин выполняет функцию медиатора в синапсах, образуемых возвратными коллатералями аксонов двигательных нейронов спинного мозга на вставочных клетках Реншоу, которые в свою очередь с помощью другого медиатора оказывают тормозящее воздействие на мотонейроны.

Этот пример является хорошей иллюстрацией принципа Дейла, так как известно, что перифе­рические окончания моторных аксонов активируют волокна скелетной мускулатуры с помощью ацетилхолина. Возвратные коллатерали тех же аксонов в пределах ЦНС выделяют тот же медиатор.

Холинергическими являются и нейроны спинного мозга, иннервирующие хромаффинные клетки, а также преганглионарные нейроны, иннервирующие нервные клетки интрамуральных и экстрамуральных ганглиев. Полагают, что холинергические нейроны имеют­ся в составе ретикулярной формации среднего мозга, мозжечка, базальных ганглиях и коре.

Катехоламины. Три родственных в химическом отношении вещества: дофамин, норадреналин и адреналин.являются производными тирозина и выполняют медиаторную функцию не только в периферических, но и в центральных синапсах.

Дофаминергические нейроны находятся у млекопитающих главным образом в преде­лах среднего мозга, образуя так называемую нигростриальную систему. Особенно важную роль дофамин играет в полосатом теле, где обнаруживаются особенно большие количества этого медиатора. Кроме того, дофаминергические нейроны имеются в гипо­таламусе.

Норадренергические нейроны содержатся также в составе среднего мозга, моста мозга и продолговатого мозга. Аксоны норадренергических нейронов образуют восходя­щие пути, направляющиеся в гипоталамус, таламус, лимбические отделы коры и в моз­жечок. Нисходящие волокна норадренергических нейронов иннервируют нервные клетки спинного мозга.

Катехоламины оказывают как возбуждающее, так и тормозящее действие на нейроны ЦНС.

Серотонин. Подобно катехоламинам, серотонин относится к группе моноаминов, синтезируется из аминокислоты триптофана. У млекопитающих серотонинергические нейроны локализуются главным образом в стволе мозга. Они входят в состав дорсального и медиального ядер шва продолговатого мозга, моста и среднего мозга. Серотонинерги­ческие нейроны распространяют влияния на новую кору, гиппокамп, бледный шар, миндалину, подбугровую область, стволовые структуры, кору мозжечка, спинной мозг.

Серотонин играет важную роль в нисходящем контроле активности спинного мозга и в гипоталамическом контроле температуры тела. Нарушения серотонинового обмена, возникающие при действии ряда фармакологических препаратов, могут вызы­вать галлюцинации. Нарушения функции серотонинергических синапсов наблюдаются при шизофрении и других психических расстройствах. Серотонин может вызывать воз­буждающее и тормозящее действие в зависимости от свойств рецепторов постсинаптической мембраны.

Нейтральные аминокислоты. Две основные дикарбоксильные кислоты L-глутамат и L-аспартат находятся в большом количестве в ЦНС и могут выполнять функцию медиа­торов.

L-глутаминовая кислота представляет собой дикарбоновую аминокислоту, входя­щую в состав многих белков и пептидов. Она плохо проходит через гематоэнцефалический барьер и поэтому не поступает в мозг из крови, образуясь в самой нервной ткани (главным образом из глюкозы). В ЦНС млекопитающих глутамат обнаруживается в высоких концентрациях.. По-видимому, он является одним из самых распространенных медиаторов в центральных синапсах позвоночных животных. Полагают, что его функция связана главным образом с синаптической передачей возбуждения.

Глутамат исчезает из синаптической щели вследствие захвата его нервными и глиальными клетками и пресинаптическими окончаниями. Глутамат принимает участие в ряде важных метаболических процессов и входит в цикл синтеза у-аминомасляной кислоты. Сходное с ним действие оказывает на центральные нейроны аспартат.

Кислые аминокислоты. К этой группе аминокислот относятся ГАМК, и глицин.

ГАМК представляет собой продукт декарбоксилирования L-глутаминовой кислоты. Эта реак­ция катализируется декарбоксилазой глутаминовой кислоты. Отмечено значительное совпадение локализации этого фермента и ГАМК в пределах ЦНС. Другой фермент нервной ткани — трансаминаза — катализирует перенос аминогруппы ГАМК на сх-кетоглутаровую кислоту, в результате чего последняя превращается в семиальдегид янтарной кислоты.