Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
35
Добавлен:
30.03.2015
Размер:
1 Mб
Скачать

Паразитизм – один вид использует другой не только как источник пищи, но и как среду обитания.

Паразитами являются 10% живых организмов. Паразитизм может быть постоянным (гельминт), временным (комар) или периодическим (личинка). Паразитизм также бывает обязательный и факультативный.

Формы паразитизма чрезвычайно многообразны, и

классификация их возможна по разным основаниям. С точки зрения обязательности

паразитического образа жизни для данного вида различают истинный и ложный, а

также облигатный и факультативный паразитизм.

При истинном паразитизме взаимоотношения между паразитом и хозяином являются закономерными и

имеют эволюционную основу. Паразитология изучает в основном феномен истинного

паразитизма.

Ложный паразитизм — явление для данного вида случайное. В

нормальных условиях данный вид ведет свободный образ жизни. При попадании в

организм хозяина ложный паразит может некоторое время сохранять

жизнеспособность и нарушать жизнедеятельность хозяина. Примерами ложного

паразитизма являются случаи обнаружения пиявок в носовой полости и носоглотке

человека. Ложный паразитизм пиявок может привести хозяина к смерти в связи с

закупоркой дыхательных путей или из-за носовых кровотечений, которые они могут

вызвать.

Облигатный паразитизм — паразитизм, являющийся обязательным для

данного вида организмов. Абсолютное большинство видов паразитов относятся к

этой группе.

Факультативные паразиты способны вести свободный образ жизни, но, попадая в организм хозяина, проходят в нем часть

цикла своего развития и нарушают его жизнедеятельность. Таковы многие виды

синантропных мух, личинки которых могут нормально развиваться либо в пищевых

продуктах человека, либо в его кишечнике, вызывая кишечный миаз (см. разд. 21.2.4).

По времени контакта хозяина и паразита паразитизм бывает временным и постоянным. Временные

паразиты обычно посещают хозяина только для питания. Это в основном кровососущие членистоногие. Постоянные паразиты подразделяются на стационарных и периодических.

Стационарные паразиты всю жизнь проводят на хозяине или внутри него. Примерами являются вши, чесоточный клещ, трихинеллаь спиральная и многие другие. Периодические паразиты часть своего жизненного цикла проводят в паразитическом состоянии,

остальное время обитают свободно. Типичным паразитом такого рода является угрица кишечная.

Тип положительного взаимодействия - мутуализм, обязательная зависимость популяций друг от друга. Мутуализм приносит пользу двум видам, которая чаще всего состоит в том, что один из партнеров использует другого в качестве пищевых ресурсов, а другой получает защиту от врагов или благоприятные для роста и размножения условия и при этом одновременно опыляет растения, распространяет семена и т.п.

По мнению многих ученых, от мутуалистических отношений организмов зависит образование значительной доли биомассы планеты.

В качестве примера мутуализма, включающего поведенческие взаимосвязи, можно привести взаимодействие африканской птицы медоуказчика и млекопитающего медоеда. Медоуказчик специализируется по разыскиванию пчелиных гнезд и приводит к ним медоеда. Медоед вскрывает гнездо и поедает личинки и мед, а медоуказчик питается остатками его трапезы. Птица могла бы сама разыскивать гнезда пчел, но не смогла бы их вскрыть, а медоед, наоборот, вскрывает гнезда, но с трудом их находит.

Один из видов мутуализма - разведение человеком растений и животных, многие виды которых сохранились лишь благодаря его вмешательству, продиктованному корыстными интересами.

Положительные воздействия основаны на взаимовыгодных отношениях.Мутуализм:

Эндосимбиотические связи - организмы, населяющие желудки жвачных животных;

Симбиотические связи - организмы, живущие в клетках и тканях других организмов;

Мутуализм высших растений и грибов – микориза;

Мутуализм водорослей и грибов – лишайники;

Мутуализм при фиксации азота – бактерии, актиномицеты, водоросли.

14. Сообщество. Пространственная, видовая и трофическая структура сообщества. Вертикальная и горизонтальная структура. Консорция. Краевой эффект.

Сообщество -совокупность видов животных и растений, длительное время сосуществующих в определенном пространстве и образующих экологическое единство. Как и популяция, сообщество имеет собственные свойства и характеризуется собственными показателями, присущими только ему. Свойствами сообщества являются устойчивость (то есть способность противостоять внешним воздействиям), продуктивность (способность производить живое вещество). Показателями сообщества являются характеристики его состава (видовое разнообразие, структура пищевой сети), а также соотношение отдельных групп организмов. Одна из главных задач экологии ? выяснить взаимосвязи между свойствами и составом сообщества, которые проявляются независимо от того, какие виды в него входят.

Трофическая структура сообщества.

Структура сообщества показатель соотношения различных групп организмов, различающихся по систематическому положению; по роли, которую они играют в процессах переноса энергии и вещества; по месту, занимаемому в пространстве, в пищевой (трофической) сети, либо по иному признаку, существенному для понимания закономерностей функционирования естественных экосистем

Видовая структура

Одним из важнейших показателей структуры сообщества является видовой состав входящих в него организмов. Видовой состав сообщества определяется рядом факторов, важнейшие среди которых: географическое местоположение, определяющее состав флоры и фауны, особенности климата, тип ландшафта и его высота над уровнем моря, водный режим, возраст самого сообщества. В пределах отдельных континентов и климатических зон сходные по видовому составу сообщества формируются в районах, сходных по экологическим условиям.

Пространственная структура экосистемы. Популяции разных видов в экосистеме распределены определенным образом - образуют пространственную структуру. Различают вертикальную и горизонтальную структуры экосистемы.

Основу вертикальной структуры формирует растительность.

Растительное сообщество определяет, как правило, облик экосистемы. Растения в значительной мере влияют на условия существования остальных видов. В лесу это крупные деревья, на лугах и в степях - многолетние травы, а в тундрах господствуют мхи и кустарнички.

Обитая совместно, растения одинаковой высоты создают своего рода этажи - ярусы. В лесу, например, высокие деревья составляют первый (верхний) ярус, второй ярус формируется из молодых особей деревьев верхнего яруса и из взрослых деревьев, меньших по высоте. Третий ярус состоит из кустарников, четвертый - из высоких трав. Самый нижний ярус, куда попадает совсем мало света, составляют мхи и низкорослые травы.

Ярусность наблюдается также в травянистых сообществах (лугах, степях, саваннах). Имеется и подземная ярусность, что связано с разной глубиной проникновения в почву корневых систем растений: у одних корни уходят глубоко в почву, достигают уровня грунтовых вод, другие имеют поверхностную корневую систему, улавливающую воду и элементы питания из верхнего почвенного слоя.

Благодаря ярусному расположению растения наиболее эффективно используют световой поток, при этом снижается конкуренция: светолюбивые растения занимают верхний ярус, а теневыносливые развиваются под их пологом.

Животные тоже приспособлены к жизни в том или ином растительном ярусе (некоторые вообще не покидают свой ярус). Например, среди насекомых выделяют: подземных, обитающих в почве (медведка, норный паук); наземных, поверхностных (муравей, щитник); обитателей травостоя (кузнечик, тля, божья коровка) и обитателей более высоких ярусов (различные мухи, стрекозы, бабочки).

Вследствие неоднородности рельефа, свойств почвы, различных биологических особенностей растения и в горизонтальном направлении располагаются микрогруппами, различными по видовому составу. Это явление носит название мозаичности. Мозаичность растительности - это своего рода "орнамент", образованный скоплениями растений разных видов.

Благодаря вертикальной и горизонтальной структурам обитающие в экосистеме организмы более эффективно используют минеральные вещества почвы, влагу, световой поток.

КОНСОРЦИЯ(от лат. consortium - соучастие сообщество),

структурная единица биоценоза, в которой автотрофные организмы объединены с гетеротрофными организмами на основе пространственных (топических) и пищевых (трофических) связей. Представление о консорции одновременно и независимо друг от друга ввели зоолог В. Н. Беклемишев (1951) и ботаник Л. Г. Раменский (1952). Примером К. может служить любое отдельное дерево со всеми фитофагами и их паразитами, микоризными грибами, эпифитами, гнездящимися птицами и т. д.

Более или менее резкие границы между биоценозами можно наблюдать лишь в случаях резкого изменения факторов абиотической среды. Например, такие границы существуют между водными и наземными биоценозами, в местах, где происходит резкая смена минерального состава почвы и т.п. В целом же, говоря об экотоне мы имеем в виду переходную полосу между соседними (двумя или несколькими) контактирующими биоценозами, некую зону контакта высокой биологической активности, где присутствуют организмы как из одного, так и из другого биоценоза. Поэтому часто количество видов в экотоне превышает количество их в каждом из граничащих биоценозов. Такое явление - тенденция к увеличению разнообразия и плотности организмов на границах биоценозов носит название краевой эффект. Наиболее отчетливо краевой эффект проявляется в зонах, отделяющих лес, от луга (зона кустарников), лес от болота и т.д.

15. Динамика сообществ во времени. Аллогенные и автогенные сукцессии. Первичные и вторичные сукцессии. Климаксные сообщества.

Динамика сообществ - изменения во времени — естественное свойство экологических сообществ. Первопричиной смены фитоценозов он считал изменение отдельных климатических факторов или их комплекса, а реакция экосистем в виде смены последовательного ряда сообществ представляет адаптивный ответ на экосистемном уровне. Сукцессия, по Ф. Клементсу, завершается формированием сообщества, наиболее адаптированного по отношению к комплексу климатических условий. Такое сообщество он называл «климакс-формация», или просто климакс.

Напомним, что под экологической сукцессией понимается постепенная необратимая направленная смена одних биоценозов другими на одной и той же территории под влиянием природных факторов или воздействия человека.

се сукцессии можно разделить на две большие группы. Это прежде всего аллогенные сукцессии (от греч. alios - иной, другой и genesis - возникновение), причины которых определяются внешними влияниями (природными или антропогенными), изменяющими условия среды. Таким образом, при ал-логенной сукцессии источник изменения биоценоза находится в окружающей его среде. Движущие силы сукцессии имеют направленный характер: среда -> растительность.

К такому типу сукцессии можно отнести переход от эв-фофного озера, обогащенного питательными веществами стоков (например, животноводческой фермы), к болоту или наземному сообществу.

Сукцессии, происходящие в результате изменения условий среды самими сообществами в отсутствие постепенного зменения абиотических факторов, называются автогенными от греч. autos - сам и genesis - происхождение). В данном случае источником смены служит сама растительность, которая осредством изменения среды своего существования меняет руктуру. Происходит как бы «самоотрицание» растнтель-"ости. Схематично этот процесс можно представить следую-им образом: растительность -> среда —» растительность. Автогенные сукцессии могут быть первичными: развитие сообществ идет во вновь образовавшихся местообитаниях, на новых субстратах, где растительность ранее отсутствовала, -на песчаных дюнах, застывших потоках лавы, на породах, обнажившихся в результате эрозии или отступления льдов.

КЛИМАКСНОЕ СООБЩЕСТВО - стабильное сообщество, возникающее в завершение смены фитоценоза (растительного сообщества). В ходе смены фитоценоза ряд растений и сопутствующих им животных постепенно захватывают некоторую местность, причем новые виды вытесняют многие прежние, уже имевшиеся там. Когда этот процесс завершается, образовавшееся в результате сообщество достигает стабильности, поскольку установилось равновесие с местными условиями среды.

16. Экосистема. Основные функциональные группы организмов в экосистеме. Продуценты, консументы и редуценты. Биомасса и продукция. Первичная продукция: чистая, валовая.

Экосисте́ма, или экологи́ческая систе́ма (от др.-греч. οἶκος — жилище, местопребывание и σύστημα — система) — биологическая система, состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Одно из основных понятий экологии.Пример экосистемы — пруд с обитающими в нём растениями, рыбами, беспозвоночными животными, микроорганизмами, составляющими живую компоненту системы, биоценоз. Для пруда как экосистемы характерны донные отложения определенного состава, химический состав (ионный состав, концентрация растворенных газов) и физические параметры (прозрачность воды, тренд годичных изменений температуры), а также определённые показатели биологической продуктивности, трофический статус водоёма и специфические условия данного водоёма.

Функциональные группы организмов в экосистеме. Живые организмы в экосистеме выполняют различные функции, которые зависят от типов питания. В ходе эволюции на Земле возникло два основных типа питания - автотрофное и гетеротрофное.

Автотрофы - это продуценты (производители) органического вещества из неорганического. Растения и некоторые бактерии способны преобразовывать солнечную энергию в процессе фотосинтеза и создавать (синтезировать) органические вещества, которые гетеротрофы используют в качестве пищи. При этом продуценты потребляют из атмосферы углекислый газ, образованный в процессе жизнедеятельности гетеротрофов, и выделяют кислород.

Гетеротрофы, в свою очередь, выполняют в экосистеме роль консументов и редуцентов.

Консументы - потребители органического вещества. Травоядные животные употребляют растительную пищу, а плотоядные - животную. В результате процесса пищеварения, протекающего в организмах консументов, происходит первичное измельчение и разложение органического вещества. Это облегчает дальнейшую деятельность редуцентов.

Редуценты - это организмы, окончательно разлагающие органические вещества, содержащиеся в отходах и трупах консументов и продуцентов. К редуцентам относят бактерии и грибы. В процессе жизнедеятельности этих организмов восстанавливаются минеральные вещества, которые вновь используют продуценты.

Таким образом, в экосистеме выделяют три функциональные группы организмов: продуценты, консументы, редуценты. Каждая функциональная группа в экосистеме представлена не одним, а несколькими видами. Это гарантирует экосистеме длительное, стабильное существование.

Биомасса — это количество живого вещества (в единицах массы), приходящаяся на единицу площади или объема (т/м кв, г/м кв). Биомасса может быть также выражена в энергетических единицах, содержащихся в соответствующей единицы массы живого вещества (в джоулях). В зависимости от происхождения различают фито- , зоо-и бактериомасу.

Продуктивность экосистем — это количество органического вещества (в единицах массы или энергии), производимой с единицы поверхности за единицу времени. Например, производительность тропического леса — кг/м кв в год и т.д.

Производительность биологическая (экосистем) бывает первичной, вторичной, чистой и валовой.

Первичная продуктивность (или продукция) — это биомасса или энергия, созданная продуцентами вединицу времени на единицу пространства. Различают валовую первичную продуктивность (ВПП) — скорость, с которой солнечная энергия превращается продуцентами на органическое соединение во время фотосинтеза (ее выражают в кал/м кв в час), и чистую первичную продуктивность (ЧПП) — энергию, что идет на прирост или поглощается деструктором:

ВПП = ЧПП + Д,

где ВПП — валовая первичная продуктивность; ЧПП — чистая первичная продуктивность; Д — энергия дыхания.

Можно сказать, что валовая первичная продуктивность (ВПП) — это энергия, фиксированная в процессе фотосинтеза, а чистая первичная продуктивность (ЧПП) — скорость прироста биомассы, которая может быть усвоена гетеротрофними организмами. В тропических лесах на дыхание идет 70-80% энергии, в лесах умеренной зоны — 50-75% (Одум, 1989).

Вторичная производительность (или вторичная продукция) — общее количество органического вещества, которая произведена всеми гетеротрофами на единицу площади за единицу времени. Вторичная производительность также делится на валовую и чистую.

17. Трофическая сеть и трофические уровни. Схема потока энергии через трофический уровень. Пастбищная и детритная пищевые цепи. Пирамиды биомассы, энергии и численности.

Обычно для каждого звена цепи можно указать не одно, а несколько других звеньев, связанных с ним отношением «пища — потребитель». Так, траву едят не только коровы, но и другие животные, а коровы являются пищей не только для человека. Установление таких связей превращает пищевую цепь в более сложную структуру — трофическую сеть.

Трофический уровень — это совокупность организмов, занимающих определенное положение в общей цепи питания. К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

Так, зеленые растения занимают первый трофический уровень (уровень продуцентов), травоядные животные — второй (уровень первичных консу-ментов), первичные хищники, поедающие травоядных, — третий (уровень вторичных консументов), а вторичные хищники — четвертый (уровень третичных консументов). Трофических уровней может быть и больше, когда учитываются паразиты, живущие на консументах предыдущих уровней.

Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой поток вещества и энергии в экосистеме, основу ее организации.

Пищевые цепи можно разделить на два типа. Пастбищная цепь начинается от зеленого растения и идет далее к пасущимся растительноядным животным и затем - к хищникам. Детритная цепь идет от мертвого органического вещества (детрита) к микроорганизмам-редуцентам и животным, поедающим мертвые остатки (детритофагам), и затем - к хищникам, питающимся этими животными и микробами.

1. Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами — насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).

2. Пирамида биомасс — соотношение масс организмов разных трофических уровней. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70—90 кг свежей травы.

В водных экосистемах можно также получить обращенную, или перевернутую, пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона общая масса в данный момент его может быть меньше, нежели у потребителей-консументов (киты, крупные рыбы, моллюски).

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем. Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

3. Пирамида энергии отражает величину потока энергии, скорость про хождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энер гии, а скорость продуцирования пищи.

Установлено, что максимальная величина энергии, передающейся на следующий трофический уровень, может в некоторых случаях составлять 30 % от предыдущего, и это в лучшем случае. Во многих биоценозах, пищевых цепях величина передаваемой энергии может составлять всего лишь 1 %.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90 % всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Вот почему цепи питания обычно не могут иметь более 3—5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей. К конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Этому утверждению можно найти объяснение, проследив, куда тратится энергия потребленной пищи (С). Часть ее идет на построение новых клеток, т.е. на прирост (Р). Часть энергии пищи расходуется на обеспечение энергетического обмена 7или на дыхание ( i ?) . Поскольку усвояемость пищи не может быть полной, т.е. 100 %, то часть неусвоенной пищи в виде экскрементов удаляется из организма ( F ). Балансовое равенство будет выглядеть следующим образом:

С = Р + R + F .

Учитывая, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы, становится ясным, почему каждый последующий уровень всегда будет меньше предыдущего.

18. Биосфера, как охваченная жизнью область планеты Земля. Распределение солнечной радиации по поверхности Земли. Вода и атмосфера. Их роль в поддержании температурного режима. Концепция биосферы В. И. Вернадского.

В начале XIX в. понятие (не термин) «биосфера» было введено в науку великим французским естествоиспытателем Ж. Б. Ламарком (1744-1829). Термин «биосфера» для определения земной оболочки, занятой жизнью, одновременно с терминами «гидросфера» и «литосфера» в конце XIX в. утвердил в научном обиходе знаменитый австрийский геолог Э. Зюсс (1831-1914).

Биосферой В. И. Вернадский назвал «ту область нашей планеты, в которой существует или когда-либо существовала жизнь и которая постоянно подвергается или подвергалась воздействию живых организмов» (верхняя часть литосферы, гидро- и тропосфера). Значение организмов обусловлено их большим разнообразием, повсеместным распространением, длительностью существования в истории Земли, избирательным характером биохимической деятельности и исключительно высокой химической активностью по сравнению с компонентами природы.

Всю совокупность организмов на планете В. И. Вернадский назвал живым веществом, рассматривая в качестве его основных характеристик суммарную массу, химический состав и энергию.

Закон константности, сформулированный В. И. Вернадским, гласит:

Количество живого вещества биосферы (для данного геологического периода) есть величина постоянная (константа).

Итак, Вернадский определил биосферу как наружную оболочку Земли, область распространения жизни.

Биосфера включает в себя:

живое вещество, то есть совокупность всех ЖИВЫХ организмов (растения, животные, микроорганизмы);

биогенное вещество, то есть органо-минералыные или органические продукты, созданные живым веществом (торф, каменный уголь, нефть);

биокосное вещество, созданное живыми организмами вместе с неживой (косной) природой (водой, атмосферой, горными породами ? почвенный покров).

Все компоненты биосферы тесно взаимодействуют между собой, составляя целостную, сложно организованную систему, развивающуюся по своим внутренним законам и под действием сил, в том числе космических (солнечного излучения, гравитационных и магнитных полей Солнца, Луны и других небесных тел).

Солнечная радиация — вся совокупность солнечного излучения. Попадая в атмосферу, она частично (до 20 %) ею поглощается и переходит в другие виды энергии. Около 30 % радиации атмосфера рассеивает во все стороны, в том числе и к земной поверхности. Это рассеянная радиация. Та радиация, которая доходит до земной поверхности, не рассеивается и не поглощается, называется прямой радиацией. Вместе прямая и рассеянная радиация, подошедшая к поверхности, составляет суммарную радиацию. Количество суммарной радиации зависит от угла падения солнечных лучей на поверхность, продолжительность дня, облачность и прозрачность атмосферы. Наибольшая суммарная радиация в тропических широтах. Количество солнечной радиации зависит и от отражающей способности поверхности. Белая поверхность снега или льда отражает до 90 % солнечных лучей.

Соседние файлы в папке Экология