Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курсовая работа. Печь ДСП-120.doc
Скачиваний:
325
Добавлен:
02.04.2015
Размер:
1.65 Mб
Скачать

2.2.3 Расчет механических узлов дуговой печи

На рис. 2.18 показана кинематическая схема одной из конструкций механизмов подъема и поворота свода, а также перемещения электродов для печи с опорой этих механизмов на люльку.

Механизм подъема свода

Подъем и опускание свода осуществляют два синхронно работающих механизма, приводом которых являются электродвигатели 25 и червячно-винтовые редукторы 24. Свод 21 подвешен к полупорталу 19 на перекинутых через блоки 5 и 18 цепях 20 и тягах 4, связанных с червячно-винтовыми редукторами. При работе электродвигателя 25 и червячно-винтового редуктора 24 тяговый винт 24а редуктора получает поступательное движение вверх или вниз, перемещая тяги 4 цепи 20 и, тем самым, свод 21 (на высоту до 500 мм). Для синхронизации работы двух механизмов предусмотрен уравнительный вал 31, связанный с редукторами через муфты 32.

Расчет мощности электродвигателя подъема свода:

Мощность одного двигателя подъема свода, кВт:

,

где Qсв– сила тяжести свода, Н;Vсв– скорость подъема свода, м/с;– КПД привода,;

– КПД блоков;– КПД. винтовой и червячной передачи,

,

- угол подъема винта редуктора,=arctgt();

t – шаг винта со средним диаметром резьбы ;

– угол трения в резьбе,

=arctgt(); – коэффициент трения.

Механизм поворота свода

Для отворота свода от рабочего пространства печи вращают вал 27 с жестко закрепленной на нем плитой 30, являющейся опорой полупортала 19 и подвешенного к нему свода 21; поворотный вал 27 опирается на люльку печи через два радиальных 29 и один упорный 26 подшипники. Приводом поворота являются электродвигатель 22 и трехступенчатый цилиндрический редуктор 23, на выходном валу которого посажена коническая зубчатая шестерня, входящая в зацепление с зубчатым сектором 28, жестко насаженным на вал 27. Получая вращения от привода, зубчатая шестерня вызывает поворот зубчатого сектора 28 и вала 27 вокруг его вертикальной оси и, тем самым, поворот плиты 30 и свода печи.

Рис. 21. Кинематическая схема механизмов подъёма, и поворота свода и перемещения электродов для печи с их опорой на люльку

1, 22, 25 – электродвигатель; 2, 23, 24 – редуктор; 3 – барабан; 4 – тяга; 5, 10, 11, 13, 18 – блок; 6 – колонна; 7, 12 – канат; 8 – каретка; 9 – груз; 14 – ходовой ролик; 15 – рукав; 16 – электродо-держатель; 17 – электрод; 19 – полупортал; 20 – цепь; 21 – свод; 24а – тяговыйвинт; 26 – упорный подшипник; 27 – поворотный вал; 28 – зубчатый сектор; 29 –радиальный подшипник; 30 – плита; 31 – уравнительный вал; 32 – муфта

Расчет мощности электродвигателя подъема свода

Для выбора двигателя поворота свода последовательно определяются следующие параметры:

Центр тяжести механизма поворота:

где Gi – сила тяжести отдельных поворачивающихся деталей: свода, полупортала, плиты, вала, приводов и т. п.; – сила тяжести всех поворачивающихся деталей; xi – центр тяжести всех поворачивающихся деталей.

Статический момент поворота:

,

где r1, r2, r3 – радиусы опор в верхнем и нижним радиальных и в упорном подшипниках с соответствующими коэффициентами трения ; ;h– расстояние между радиальными подшипниками.

Момент, приведенный к валу электродвигателя:

Mдв = Mп/i,

где i –передаточное отношение привода.

Мощность электродвигателя поворота, кВт

где – КПД привода;– частота вращения двигателя.

Механизм перемещения электродов

Приводом этого механизма служит барабанная лебедка, включающая электродвигатель 1, червячный редуктор 2 и барабан 3. Вращение барабана вызывает перемещение вверх или вниз каната 7, перекинутого через блоки 10 и через закрепленный на рукаве 15 блок 13, и тем самым вертикальное перемещение каретки 8 с рукавом 15, несущим электрододержатель 16 с электродом 17. Каретка на ходовых роликах 14 передвигается по колонне 6; блоки 10 называют неподвижными, а перемещающийся в вертикальном направлении блок 13 – подвижным. Груз 9 с помощью перекинутого через блоки 11 каната 12 частично уравновешивает силу тяжести каретки 8.

Расчет мощности электродвигателя механизма перемещения электродов

Для выбора мощности электродвигателя механизма перемещения электродов последовательно определяются следующие величины:

Усилие Р на подвижном блоке 13 (рис. 2.18)

,

где - бщая сила тяжести каретки, электрода, механизма зажима и части токоподводящих шин;– сила тяжести противовеса; а – расстояние от центра тяжести поднимаемых массдо оси ближних к центру тяжести ходовых роликов; l – расстояние между осями роликов, расположенных на разных сторонах колонны; b – расстояние между осями ро-

ликов, расположенных на одной стороне колонны; m – расстояние между осью подвижного блока и осями ближних к блоку ходовых роликов; W – коэффициент тяги,

- коэффициент трения в цапфах роликов диаметром d; f – коэффициент трения на ободе роликов диаметром Dp; Кр – коэффициент реборд;– КПД противовесов.

Момент на валу электродвигателя:

,

где –радиус барабана;,– передаточное отношение и КПД привода лебедки.

Мощность привода:

, кВт,

где – частота вращения двигателя.

При реечном приводе момент на валу электродвигателя:

где Dш – диаметр шестерни; – передаточное отношение и к. п. д. привода реечной передачи.

Мощность электродвигателя при реечном приводе, кВт :

Момент сопротивления вращению ванны печи с металлом с суммарной силой тяжести Gпечи + Gмет зависит от сопротивления в цапфах диаметром dц ходовых роликов и от трения на ободе ходовых роликов диаметром Dx:

,

где , f, Kp – коэффициенты трения в цапфах, на ободе роликов и на ребордах;– средний радиус опорного кольца.

Далее выбирается электродвигатель по требуемой мощности:

Механизм наклона печи

Расчет привода механизма наклона печи предполагает последовательное определение следующих характеристик.

Момент сопротивления опрокидыванию порожней печи имеющей массу Gп равен

где r – величина радиуса вектора от центра кривизны люльки до центра тяжести печи; – угол наклона радиуса вектора к вертикальной оси печи;– угол поворота, при вращении по часовой стрелке знак «+», против «–».

Момент от сил трения качения люльки радиусом

где Gп, Gм – сила тяжести порожней печи и металла; Rл – радиус сегментов люльки; Е – модуль упругости материала колеса; b – суммарная толщина двух сегментов люльки.

Внутренний профиль пода печи представляет собой шаровой сегмент с начальным объемом металла:

где h – высота сегмента металла; – внутренний радиус шарового сегмента.

Сила тяжести металла

где – удельная масса расплава.

Опрокидывающий момент от жидкого металла при повороте на угол равен:,

где n – расстояние между центрами кривизны люльки и шарового сегмента.

Отсюда общий момент сопротивления наклону печи

Максимальный общий момент будет при наклоне печи = 40 – 45°, когда из печи будет слит весь металл,

Обозначим угол между вертикалью печи и прямой отрезка, соединяющего центры кривизны сегментов люльки печи и точки подвески рейки, через . Находим усилие наклона печи Рр, приложенное к одной рейке:

где l – расстояние между центром кривизны сегмента люльки и точкой подвески рейки.

Максимальное усилие на рейке:

По максимальной силе определяется момент на валу каждого из двух электродвигателей:,

где – радиус начальной окружности приводной шестерни; i,– передаточное отношение и к.п.д привода.

Статическая мощность двигателя, кВт:

,

где – частота вращения двигателя,. При расчете механического оборудования и исполнительных механизмов печей к проектным расчетам предъявляются повышенные требования с точки зрения точности и качества, так как при работе с большими массами жидкого металла недопустимы сбои и отказы в работе техники.