Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника. Курс лекций .doc
Скачиваний:
168
Добавлен:
11.04.2015
Размер:
6.4 Mб
Скачать
      1. Решающие элементы аналоговых вычислительных машин (авм).

Под решающими элементами будем понимать электронные устройства, предназначенные для выполнения вычислительных операций над переменными АВМ и построенные с применением ОУ.

Необходимость применения ОУ обоснована тем, что только большое значение коэффициента усиления (десятки, сотни тысяч) позволяет определить передаточную функцию только цепью обратной связи. Причем обратная связь должна быть отрицательной для получения устойчивой работы.

        1. Сумматор.

Сумматор – решающий элемент, выполняющий операцию суммирования. Схема сумматора показана на рис.87. По известной методике сделаем вывод зависимости выходного напряжения в зависимости от входных напряжений.

Рис.87. Сумматор.

обобщая полученный результат для схемы с N входами, будем иметь . Как видно из выражения выходное напряжение для такой схемы равно сумме произведений входных напряжений на коэффициент определяемый отношением сопротивления обратной связи и входным сопротивлением. Если выбрать все резисторы равными между собой, то все коэффициенты станут равными 1 и схема будет выполнять операцию суммирования. Если оставить один вход и коэффициент сделать равным 1, то получаем схему описываемую выражением Uвых = - Uвх. Получили схему, изменяющую знак входного напряжения – инвертор.

2.5.4.2.Интегратор.

Е

Рис.88. Интегратор.

сли в схеме сумматора резистор обратной связи R01 заменить на конденсатор, то получаем новый решающий элемент, выполняющий операцию интегрирования – интегратор (рис.88). Определим зависимость между входным и выходным напряжениями. Для достижения этой цели составим уравнение по первому закону Кирхгофа для точки a. При этом будем считать, что резистор и конденсатор выбраны таким образом, что ток протекающий через них значительно (например, в 1000 раз) больше входного тока операционного усилителя. Это дает нам возможность сделать допущение – пренебречь входным током операционного усилителя. При выводе воспользуемся законом Ома для участка цепи.

. В этом уравнении не определена переменная Ua. Для ее определения воспользуемся основным уравнением операционного усилителя . В зтом выражении, и, следовательно, Ua = -Uвых/Ку. Выходное напряжение всегда величина конечная, не превышающая напряжение питания, а коэффициент усиления Ку величина большая в пределе стремящаяся к бесконечности, и, следовательно, будем иметь Ua = - Uвых/(Ку → ∞) = → 0. Выполняя подстановку и разрешая уравнение относительно выходного напряжения, получаем. Полученное уравнение показывает, что выходное напряжение интегратора равно интегралу от входного умноженного на постоянный коэффициент 1/(R1C0). Учитывая, что у интегратора можно организовать несколько входов и предварительно зарядить конденсатор обратной связи общее уравнение будет иметь вид. Интегратор имеющий несколько входов называют – интегросумматор. Предварительный заряд конденсатора обратной связи используют для задания начальных условий.

        1. Дифференциатор.

Если в схеме интегратора резистор и конденсатор поменять местами, то получим элемент выполняющий операцию дифференцирования – дифференциатор (рис.).

Составляя уравнение по первому закону Кирхгофа для точки а, получим . Принимая допущения сделанные при выводе уравнения интегратора, и разрешая уравнение относительно выходного напряжения получаем уравнение описывающее дифференциатор., уравнение показывает, что данная схема выполняет операцию дифференцирования входного напряжения. В связи с высокой чувствительностью дифференциатора к импульсным помехам применение его ограничено.

Р

Рис.89. Дифференциатор.

ассмотренные решающие элементы являются основными и позволяют решать с их использованием дифференциальные уравнения. Поэтому далее рассмотрим, как же можно решать дифференциальные уравнения. Для простоты понимания покажем это на примере.