Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика ответы на экзамен эл-во.docx
Скачиваний:
41
Добавлен:
11.04.2015
Размер:
491.02 Кб
Скачать

Вопрос 34

Ток смещения— величина, прямо пропорциональная быстроте изменения электрической индукции. Это понятие используется в классической электродинамике. Введено Дж. К. Максвеллом при построении теории электромагнитного поля.

Введение тока смещения позволило устранить противоречие в формуле Ампера для циркуляции магнитного поля, которая после добавления туда тока смещения стала непротиворечивой и составила последнее уравнение, позволившее корректно замкнуть систему уравнений (классической) электродинамики.

Переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, как если бы между обкладками конденсатора существовал ток смещения, равный току в подводящих проводах. Тогда можно утверждать, что токи проводимости (I) и смещения (Iсм) равны: Iсм = I.Ток проводимости вблизи обкладок конденсатора

(поверхностная плотность заряда  на обкладках равна электрическому смещению D в конденсаторе.) Подынтегральное выражение можно рассматривать как частный случаи скалярного произведения , когдаиdS взаимно параллельны. Поэтому для общего случая можно записать

Сравнивая это выражение имеем- плотность тока смещения.

Плотность полного тока Максвелл обобщил теорему о циркуляции вектора Н, введя в ее правую часть полный ток сквозь поверхностьS, натянутую на замкнутый контур L. Тогда обобщенная теорема о циркуляции вектора Н запишется в виде

Вопрос 35

В основе теории Максвелла лежат рассмотренные выше четыре уравнения:

1. Электрическое поле может быть как потенциальным (EQ), так и вихревым (Ев), поэтому напряженность суммарного поля Е = Ее + ЕB. Так как циркуляция вектора EQ равна нулю, а циркуляция вектора Ев определяется выражением , то циркуляция вектора напряженности суммарного поляЭто уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н:

Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.

3. Теорема Гаусса для поля D: Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью , то формула запишется

4. Теорема Гаусса для поля В :

Полная система уравнений Максвелла в интегральной форме:

Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует следующая связь (изотропные несегнетоэлектрические и неферромагнитные среды): где0 и 0 — соответственно электрическая и магнитная постоянные,  и  — соответственно диэлектрическая и магнитная проницаемости,  — удельная проводимость вещества. Из уравнений Максвелла вытекает, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гауссаможно представить полную систему уравнений Максвелла вдифференциальной форме (характеризующих поле в каждой точке пространства):

Уравнения Максвелла в дифференциальной форме предполагают, что все величины в пространстве и времени изменяются непрерывно. Чтобы достичь математической эквивалентности обеих форм уравнений Максвелла, дифференциальную форму дополняют граничными условиями, которым должно удовлетворять электромагнитное поле на границе раздела двух сред.

Уравнения Максвелла — наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнитным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом — они образуют единое электромагнитное поле.