Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовая по научн. исследованиям.docx
Скачиваний:
41
Добавлен:
17.04.2015
Размер:
175.66 Кб
Скачать

Министерство образования и науки Российской Федерации

Московский Государственный Университет Леса

Кафедра технологии деревообрабатывающих производств

Курсовая работа

по дисциплине

«Основы научных исследований в деревообработке»

Вариант

на тему :«»

Выполнил: студент гр. ДО-31

Проверил: Пятков В.Е.

Москва

2013Год. Оглавление

Введение………...…………………………………………………………….3

Выбор и обоснование математической модели…………………..…….…..9

Выбор и составление плана эксперимента…………………………..……..11

Проверка нормальности распределения выходной величины………..…...14

Определение параметров генеральной совокупности………………..……19

Расчет необходимого числа параллельных опытов…………………..…....20

Обработка результатов эксперимента……………………….…………..…..21

Интерпретация результатов эксперимента…………………………...……..26

Библиографический список…………………………………………………..28

Введение

Шлифование — это процесс обработки поверхности деталей абразивными режущими инструментами. При шлифовании микрорезание (царапание) поверхностного слоя целия производится большим числом мелких зерен, объединённых в инструмент с помощью связки. Цели шлифования: придание гладкости и выравнивание поверхности; удаление материала для обеспечения заданной толщины изделий, Шлифование — высокоскоростной процесс. Для шлифования древесины и древесных материалов широко используются шлифовальные шкурки (ленты) и абразивные круги. В зависимости от конструкции станка шлифовальный инструмент может быть различным.

Скорость подачи обрабатываемого материала в шлифовальных станках выбирается в зависимости от работоспособности шлифовального инструмента. При шлифовании допускается определенная предельная длина контакта инструмента с древесиной (измеряется в направлении движения инструмента). Резание прекращается, когда все межзерновые объемы заполнятся срезанной стружкой, которые тем больше, чем больше зернистость рабочей поверхности инструмента. Поэтому за истинную скорость резания при шлифовании принимают скорость движения шлифовального инструмента.

Сила и мощность резания при шлифовании древесины. При шлифовании на каждом из зерен в зоне контакта с древесиной возникают касательные и нормальные силы. Эти элементарные силы суммируются и дают общую касательную Pz и нормальную PY силы. Первая из них определяет мощность на резание при шлифовании, вторая, направленная нормально к обрабатываемой поверхности, создает давление на стол станка.

Поверхность древесины шлифуют для уменьшения неровностей (шероховатости), вызванных ее анатомическим строением или механической обработкой .

Для шлифования древесины и древесных материалов применяются шлифовальные шкурки на тканевой основе. Шлифовальные шкурки состоят из гибкой основы (плотной бумаги или ткани), абразивного материала и клея, скрепляющего абразивные зерна и основу.

В процессе шлифования вследствие неравномерности насыпки абразивного материала вначале наиболее выступающие ребра зерен оставляют глубокие риски (царапины), а к концу работы зерна выкрашиваются и сглаживаются.

Период относительно устойчивой работы шлифовальных шкурок наступает через 8-10 мин после начала работы.

Существуют несколько методов шлифования древесины и древесных материалов: вручную; на узколенточных шлифовальных станках с ручным прижимом утюжком; дисковых станках; на проходных узколенточных станках с 1-3 лентами.

Для механизации процесса механической очистки поверхности используют металлические щетки. Однако чаще всего такую обработку проводят вручную с помощью специальной шкурки (она изготавливается на основе плотной бумаги или ткани, пропитана специальным составом связующего, на поверхности которого закреплены тонкими слоями абразивные частички). Шкурка выпускается в листовом и ленточном вариантах. Пользуются ими вручную или с помощью инструментов типа полировальных машин или шлифовальных кругов. Шлифовка может также использоваться для получения требуемого микрорельефа (увеличения или снижения). Применяется для стирания живых топографических неровностей, т.е. удаляет места, куда нельзя нанести клей. Другое преимущество — возможность работать под струей воды, избегая, таким образом, перегрева поверхности. Основным недостатком данного метода является то, что по своей сути абразивные частицы не способны сохранять существующий микрорельеф. Они выравнивают его, увеличивают отходы производства, требуют длительного времени и меняют размеры обработанных деталей.

Для бытовых целей инструмент для механической обработки представляет собой стальной полировальный круг типа Scotch Brite, на который нанесен войлок, пропитанный специальным связующим, со­держащим мелкие абразивные частицы. Эти материалы предназначены для очистки поверхностей и не оказывают существенного влияния на микрорельеф. Другим видом «механического растворителя» являются специальные «чистящие» порошки или пасты. В их состав входит мелкодисперсный наполнитель, например порошок кокосового ореха или абрикосовых косточек, с помощью которого можно выполнить полировку поверхности.

Финишная очистка. За исключением технологии обработки сухим льдом все другие операции механической обработки поверхности создают отходы в форме пыли, которую необходимо удалять. Это делается с помощью продувки сжатым воздухом или промывкой, водой или органическим растворителем. Затем поверхность следует сушить.

Нанесение специальных покрытий. При подготовке поверхностей некоторых материалов требуется, наряду с традиционными методами обезжиривания и зашкуривания, нанести на поверхность специальный слой, тонкие покрытия могут иметь толщину не более нескольких мкм. При нанесении таких покрытий решают следующие задачи:

увеличивают когезионные свойства поверхности подложки, т.к. покрытие позволяет закрыть поры и трещины;

увеличить адгезионную прочность за счет механического сцепления и физико-химического взаимодействия с образованием связей на межфазной границе;

стабилизировать металлические поверхности, чувствительные к коррозии;

оптимизировать свойства поверхности.

Общие положения технологии нанесения покрытий. Покрытия могут наноситься самыми различными способами: пульверизацией, кисточкой, методом погружения и др. Критерием выбора является вязкость материала покрытия, т.к. она должна обеспечить равномерное растекание материала покрытия по подложке.

Скорее, как исключение, можно рассматривать и метод нанесения покрытий с помощью технологии «каландрирования», или методом «трафаретной печати».

В качестве покрытий используют растворы или эмульсии. Они играют роль посредника между поверхностью подложки и клеем. Их основным назначением является создание промежуточного слоя, который будет препятствовать отрицательному воздействию клея на подложку. Иногда такие покрытия называют грунтовками, иногда праймерами, иногда просто адгезионными покрытиями.

Некоторые проблемы терминологии. Термин «покрытие» при переводе с англосаксонского языка может означать «первичный» или «ускоритель». Покрытие действительно является первичным материалом, который требуется нанести на поверхность перед клеем. Однако в некоторых случаях данные материалы используют в составах клеев для ускорения процессов полимеризации, и в этом случае правильным является термин «ускоритель».

Покрытия, улучшающие микрорельеф подложек. В качестве таких покрытий используют разбавленные растворы полимеров на той же основе, что и клей, который далее будет использован. Такое покрытие позволяет сгладить микрорельеф и будет обеспечивать хорошее адгезионное взаимодействие между клеем и подложкой.

Подложки-посредники. Различные органические или металлоорганические вещества могут участвовать в создании связей типа LW и АВ или даже приводить к образованию ковалентных связей. К таким материалам относятся:

Различные фосфорорганические соединения, например, алифатические моно и дифосфаты, тиофосфаты, фосфонаты, аминофосфонаты и др.;

Вторичные амины, полиамины и оксиамин;

Клеевые материалы, в состав которых входят активные функциональные группы, например эпоксидные, изоцианатные, акрилатные и др.;

«Многофункциональные» блок-сополимеры.

Покрытия обеспечивают одновременно защиту активированной поверхности подложки и приспосабливают ее к клеям, т.е. являются дополнительной подготовкой материалов к склеиванию. Ограниченное применение покрытий во многом объясняется увеличением трудоемкости и их токсичностью. Однако качество подготовки такими методами обеспечивается очень высокое, в том числе и решаются некоторые вопросы обеспечения долговечности клеевого соединения.

При использовании покрытий, которые способны установить ковалентные связи, существенно увеличиваются значения адгезионной прочности клеевого соединения. Эффективность применения покрытий существенно снижается, если склеиванию подлежат «мокрые» поверхности или поверхности со следами влаги.

В некоторых случаях требуется нанесение не полимерных, а металлических покрытий. Этот тип покрытий особо эффективен, если требуется соединить трудно-склеиваемые подложки. Иногда само покрытие является сложным по своему составу материалом, т.е. состоит из нескольких слоев. Такой тип покрытий называют «сборным» покрытием.

Факторы, влияющие на адгезионную прочность покрытий 

Адгезионная прочность зависит от природы полимера, подложки, от условий формирования покрытия. Установлено, что наиболее высока адгезионная прочность у покрытий, формируемых из мономерных и олигомерных пленкообразователей, которые превращаются в полимерное (трехмерное) состояние непосредственно на подложках.

Адгезионная прочность возрастает с увеличением в пленкообразователе количества полярных функциональных групп таких как -OH, -COOH,-CONH2,-CONH, -OCONH (их энергия когезии составляет 25-65 кДж/моль). Она зависит также от фазового и физического состояния материала пленки. Более адгезионно-прочные покрытия образуют аморфные пленкообразователи по сравнению с кристаллическими.

Наиболее низкую адгезионную прочность проявляют покрытия из фторопластов, полиимидов, пентапласта, полиэтилена, поливинилхлорида, сополимеров винилхлорида. Для повышения адгезионной прочности вышеуказанных полимеров проводят их модификацию: смешивают с адгезионно-активными олигомерами и мономерами (эпоксидными, эпоксидно-новолачными, эпоксидно-фурановыми, алкидными, диаллилфталатом, полиамидокислотами и др.), прививают мономеры, окисляют разными способами: химическими, тепло- или радиационным воздействием.

По-разному влияют на адгезионную прочность пластификаторы, пигменты и наполнители. Как правило, зависимость адгезионной прочности от концентрации этих ингредиентов имеет максимум. Увеличение адгезионной прочности, вероятно, обусловлено адсорбцией пластификатора, пигмента или наполнителя на активных центрах твердой поверхности, изменения в ряде случаев ее природы, а также за счет снижения внутренних напряжений в самом покрытии.

Более высокую адгезионную прочность наполненных покрытий по сравнению с ненаполненными объясняют также усилением полимеров в адгезионном слое, каталитическим влиянием на процессы структурирования и окисления, уменьшением термических напряжений, направленным изменением структуры пленки.

Однако следует отметить, что в ряде случаев наполнитель, увеличивая адгезионную прочность одного пленкообразователя, может не влиять или даже ухудшать адгезионную прочность другого; часто в избирательности действия наполнителей существенную роль может играть природа подложки. Не менее важна роль подложки в формировании адгезионного взаимодействия ее с адгезионным покрытием. Достаточно сложно получать адгезионно-прочные покрытия на гладких непористых подложках (металлы, ситаллы, стекло и др.), а также на материалах с низкой поверхностной энергией (некоторые полимеры).

С целью улучшения смачиваемости подложек лакокрасочными материалами их поверхность модифицируют, что зачастую обеспечивает увеличение адгезионной прочности покрытий. В связи с тем, что для образования прочной адгезионной связи большое значение имеют процессы микрореологического затекания жидкого адгезива в микропоры и трещины подложки, важным фактором является шероховатость поверхности. Механическое зацепление резко усиливается, если поверхность металла подвергнуть абразивной обработке, фосфатированию, оксидированию и т. д., а лакокрасочный материал использовать с пониженной вязкостью.

Адгезия зависит и от технологических условий формирования покрытий. Повышение температуры и продолжительности нагревания до определенного предела благоприятствует адгезии. Но в случае протекания деструктивных процессов в материале пленки адгезионная прочность снижается. Поэтому для каждого покрытия существуют определенные оптимальные температурные режимы его формирования

Обычно на воздухе формируются покрытия с большей адгезионной прочностью, чем в инертной среде, но превышение оптимального значения степени окисления пленкообразователя в покрытии снижает адгезионную прочность. Адгезионная прочность зависит также и от режима охлаждения покрытий, особенно, если их формируют из расплавов кристаллических полимеров.Влияние скорости охлаждения на адгезионную прочность показана ниже, на примере формирования полиэтиленовых покрытий на алюминии:

Скорость охлаждения, 

°С/мин

1,5 

 

 

16 

 

40 

 

500 

 

Адгезионная прочность, 

Н/м

160 

 

220 

 

274 

 

527 

 

1300 

 

Возможные приемы увеличения адгезионной прочности - это радиационное воздействие, использование магнитного и ультразвукового полей, как на исходные композиции лакокрасочных материалов перед их нанесением на поверхность, так и на покрытия в процессе их формирования на субстрате.