Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
генетика дополн материалы к занятиям.doc
Скачиваний:
180
Добавлен:
09.05.2015
Размер:
541.7 Кб
Скачать

Спадкові хвороби з порушенням обміну вуглеводів (фруктоземія, галактоземія, синдром беквіта відемана). Клінічні ознаки захворювань.

АД-тип успадкування цих захворювань майже не трапляється. Основна маса синдромів успадковується за типом АР (глікогенози, галактоземії, гіпербілірубінемії тощо). До генетично неоднорідної групи порушень вуг- леводного обміну зараховують цукровий діабет.

Аглікогеноз (гіперглікемічні судоми) супроводжується різкою гіпоглікемією, судомами вранці, відсутністю глікогену в печінці. Первинний біохімічний дефект -- ушкодження ферментів, відповідальних за синтез глікогену: глікогенсинтетази й уридиндифосфат-глюкозо-глікоген-трансферази. Судомних станів уникають шляхом частих годувань, у тому числі вночі. Аглікогеноз успадковується за ар-типом.

Галактоземія проявляється блюванням, жовтяницею, гепатомегалією, асцитом невдовзі після народження дитини. У подальшому розвивається катаракта, спостерігається затримка росту і розвитку.

За допомогою біохімічного дослідження виявляють галактоземію, зниження активності галактозо-І-фосфат- уридинтрансферази в еритроцитах і тканинах. Галактоземія успадковується також за ар-типом. Діти — гомозиготи за цією мутацією — не можуть вживати молока, а немовлята відмовляються від грудей. Лікування полягає в призначенні дієти (суміші, що не містять молока).

Недостатність галактокинази теж проявляється не- переносимістю галактози. Клінічні симптоми галактоземії та галактозурії такі самі, що й при попередній ензимопатії. Успадковується за ар-типом. Лікування передбачає виключення з раціону молока.

Синдрому Беквіта—Відемана властивий гігантизм плода і гіпоглікемія. Патогенез його незрозумілий. Мож- ливо, він пов'язаний з ензимопатією в межах метаболізму глікогену. Описані всі можливі типи успадкувння (переважно АД). Обговорюється роль імпринтигу

в походженні цього синдрому. Проявляється синдром від народжеиня макросомією, макроглосією, пупковою грижею, борозенками на мочках вушних раковин. Спостерігаються гіпоглікемія, гіперліпідемія, гіперхолестеинемія, гіпокальціємія. Розвивається помірна розумова відсталість. Лікування включає призначення дієти і хірургічну корекцію вад.

Гіпоглікемія новонароджених відзначається їх гіпертрофією. Такі діти нагадують своїм виглядом тих, хто народився від матерів з цукровим діабетом. Клінічні прояви включають судоми, гіпоглікемію, м'язову гіпотонію. Успадковується це порушення за ар-типом, патогенез його невідомий. Гіпоглікемія ідіопатична, сімейна, проявляеться до дворічного віку, причому частіше у хлопчиків. Спостерігаються слабкість, упрівання, підвищений апетит, тремор, судоми, можлива кома. Провокує гіпоглікемію лейцин. Припускають дефекти інсулінази, що сповільнює розпад інсуліну.

Цукровий діабет — генетично гетерогенна патологія, може бути наслідком аутоімунних процесів, зумовлених порушенням генів з системи НLА, мутаціями в структурній

та регуляторній ділянках гена інсуліну, дефектами рецепторів клітинних мембран, наявністю інгібіторів інсуліну в крові, посиленням руйнування інсуліну, іншими генетичними дефектами та різноманітними їх поєднанням.

У лікуванні даного захворювання великі надії покладені на використання методів біотехнології (генно-інженерний інсулін, пряма корекція гена).

СПАДКОВІСТЬ В ОНКОПАТОЛОПЇ

Під час характеристики клінічного перебігу первинних імунодефіцитів ми згадували про зв'язок цієї генетичної патології з канцерогенезом.

Пухлини — це насамперед молекулярна хвороба мутаційної природи. У генетичній програмі існують численні гени, що кодують або регулюють розмноження клітин, збільшення клітинної маси, диференціювання клітин, які створюють спеціалізовані тканини та органи. Найбільш напружено ці гени (онкогени та антионкогени) працюють протягом ембріонального розвитку і диференційовано, за складною системою регуляції їх експресії, виключаються з роботи при зміні генетичної програми після народження.

У наш час вже відомо безліч онкогенів та антионкогенів (супресорних генів), які беруть участь в контролі за проліферацією клітин та поділяються на 4 головні групи:

1) гени, що кодують розчинні фактори росту (група sis);

2) гени, що кодують рецептори на поверхні клітин до фактора росту (гру­пи Erb В, fms, пеи)', 3) гени, продукти яких забезпечують передавання сигналу всередині клітин (групи, сімей­ства ras, srс, аbl)',

4) гени ядерних білків, що беруть участь у ДНК-реплікації та транскрипції генів (.тус, foc, туb, Rb, Wilms, р53 та ін.).

Найчастіше ознака злоякісності клітини (втрата диференційованості, можливостей реагувати на сигнали інших клітин організму, неконтрольована проліферація) зумовлюється гомозиготним комплексом мутантних алелів, тобто наявністю двох мутацій в певному локусі гомологічних хромосом. Якщо обидві мутації виникають в соматичних клітинах організму, тоді злоякісна пухлина утворюється відносно рідко, на схилі життя, бо після випадкової мутації в онкогені (ініціація) проходить довгий період промоції, необхідний для знову ж таки випадкового виникнення другої мутації в тому ж гені, але в гомологічній хромосомі. При цьому протягом періоду промоції можлива елімінація клітин з першою мутацією або репарація останньої і тоді пухлина не виникне. А якщо така злоякісна клітина і утвориться, то може не дати нащадків, оскільки імунна сис­тема організму не впізнає її як свою і знищить.

Онкогенні віруси мають в своїй генетичній програмі вже готові мутантні онкогени і здатні вбудовувати їх у відповідні місця (замість або поряд з онкогенами клітин за механізмом комплемеитарності) одразу двох гомологів, утворюючи гомозиготу. Тоді онкогенез не потребує періоду промоції, і пухлини розвиваються скоріше (як при ВІЛ-інфекції). Цей вірус одночасно ушкоджує імунні клітини організму, викликає синдром набутого імунодефіциту (СНІД), для клінічної картини якого ха­рактерні злоякісні новоутворення (саркома Капоші, злоякісна лімфома, можливо, плоскоклітинна карцинома ротової порожнини та аденокарцинома прямої кишки у чоловіків-гомосексуалістів, інфікованих ВІЛ).

Не тільки набуті, але й успадковані імунодефіцитні стани, дефекти репаративної системи, хромосомні хвороби супроводжуються бластомо генними процесами.

Існує можливість отримання одного чи двох мутан­тних онкогенів у спадок від батьків при заплідненні. Тоді вже зникає необхідність в періодах ініціації, або ініціації і промоції, пухлини з'являються в ембріональному або дитячому чи молодому віці. Усі клітини такого організму, що є клоном однієї клітини-зиготи, містять мутантний онкоген. Практично встановлено, що одна третина ембріональних пухлин — це спадкові форми.

Ретинобластома — злоякісне новоутворення, що походить з нервових клітин сітківки ока і виявляється у віці 1—1,5 років, хвороба проявляється своєрідним світінням зіниці на світло (котяче око),відмічається послаблена реакція зіниці на світло, косоокість, втрата зору, сліпота. Можливі метастази, ушкодження другого ока, кальцифікація пухлини. Хвороба супроводжується розумовою

відсталістю. Описується АД-тип успадкування з пенет-рантністю більше як 90%. Ген ретинобластоми розта­шований на хромосомі 13q14. При ретинобластомі ма­ють місце мікроделеції в цьому локусі. Лікування: фотолазерна коагуляція, енуклеація з подальшою хіміо- та рентгенотерапією. При своєчасному лікуванні можливе клінічне одужання.

Нефробластома — пухлина нирок, супроводжується вадами розвитку нирок та сечового міхура, аніридією. Ген, що кодує нефробластому, розташований в хромосомі 11q12-13, поряд з геном аніридії, каталази, лактатдегідрогенази, всіх ланцюгів гемоглобіну. АД-тип успадкування з пенетрантністю 63%, тобто 37% з усіх, хто має таку мутацію — носії без клінічних проявів хворо­би. Можлива ДНК-діагностика онкогенетичних захворювань та носійства відповідних мутацій.

У тих випадках, коли всі клітини організму мають один мутантний онкоген, одержаний від зиготи, локалізація злоякісних пухлин буде залежати від того, в клітині якого органу виникла друга алельна мутація. Описані два типи сімейних раків: тип 1 — пухлини ендометрію, яєчників, молочної залози, простати, підшлункової залози, товстої кишки, шлунка, шкіри, легенів. Деякі з них входять до синдрому Li-Fraumeni, при якому відкриті заміни нуклеотидів в антионко-гені р53, тип 2 — рак молочної залози, саркоми, лейкози, пухлини мозку, рак сечового міхура.

Існує просто сімейний рак яєчників — менделююча патологія, мутація в гені еrb В-2. Мутація в цьому ж гені описана при злоякісній пухлині товстої кишки. У випадках раку молочної залози виявлена мутація в онкогені На ras (білок р21, у 12-му кодоні заміна аденіну на гуанін).

Генетикам відомі спадкові синдроми множинних ендокринних неоплазій (МЕН): МЕН І (синдром Вернера), МЕН На (синдром Сипла), МЕН ІІб — синдром невром слизових оболонок. Для цих генетичних менделюючих патологічних процесів характерними є пухлини щитоподібної, підшлункової, прищитоподібних залоз, гіпофіза та надниркових залоз. Вони мають АД-тип успадкування з дуже високою (майже 100%) пенетран­тністю. Ген, що зумовлює МЕН І, локалізований на хромосомі 11q, МЕН II — на хромосомі 10q.

Зараз відомо більше як 200 спадкових синдромів, при яких існує схильність до розвитку злоякісних пухлин, серед них імунодефіцити, дефекти репаратив-них систем, факоматози (з групи генодерматозів).

Р.Ф.Гарькавцева (1992) виділяє такі молекулярні механізми онкогенезу: точкові мутації в протоонко ге­нах або антионкогенах; хромосомні перебудови з переміщенням протоонкогена під постійно діючий промотор; ампліфікація онкогена (при раку легенів у 34 рази); активація протоонкогена ретровірусною інсерцією; активація протоонкогена, соматична мутація під впливом хімічних, фізичних та біологічних канцеро­генів. Можливе порушення геномного імпринтингу.

На генодерматозах — генетичне зумовлених захворюваннях шкіри, ми зупинятися не будемо, тому що вони добре викладені в спеціальній літературі. Це ж стосується і спадкових хвороб окремих органів та сис­тем (нервової, серцево-судинної, кістково-м'язового апа­рату тощо).

ХВОРОБИ ГЕНОМНОГО ІМПРИНТИНГУ

Цей клас хвороб належить до здобутків «нової гене­тики». Саме результати фундаментальних досліджень дозволили зрозуміти етіологію та патогенез багатьох спадкових хвороб і тих, що раніше до них не відноси­лися, як результат модифікації експресії генів, їх

хімічного змінення, яке не спричинює мутації, або струк­турного ушкодження самого гена. Тобто не змінюється текст інформації, але певні алелі виключаються, і на­далі не функціонують. У цьому випадку ми маємо ус­падкування модифікацій. Клінічний перебіг хвороби, навіть наявність патології залежить від материнського чи батьківського походження алелів деяких генів. Імпринтинг означає маркерування на епігенетичному рівні, що відбувається під час гаметогенезу і викликає стійкі модифікації експресії гомологічних генів.

З відомих на сьогодні процесів, котрі повністю зале­жать від імпринтингу, треба зупинитися на ембріональ­ному розвитку ссавців взагалі і людини зокрема. В останні роки вчені інтенсивно шукають відповіді на питання, чому ссавці є виключно залежними від стате­вої репродукції і як ця залежність відзначається на молекулярному рівні. Без відповідей на ці питання кло-нування ссавців не має наукової основи і не може бути успішно вирішеним. Імпринтинг — це чи не найбільша загадка нашого часу. Відомим є тільки один з його механізмів — метилювання цитозину в певних місцях ДНК. Приєднані до цитозину метилові групи виклю­чають з експресії ген, і тоді працює тільки його неме-тильований алель, який може локалізуватися в мате­ринському чи батьківському геномі. Тобто, імпринто-вана гемізиготність регулює ембріональний розвиток людини так само, як і інших ссавців. Такі, гени у ми­шей описані у вигляді кластерів на хромосомах 7, 17, Х та інших, у людини — це кластери на хромосомах 11, 15, 6, Х та інших. Під час ембріонального розвитку існу­ють періоди моноалельної експресії генів, якщо вона порушується, виникають ушкодження плода або його оболонок. Гени, що пройшли чоловічий Імпринтинг (роз­ташовані в батьківському геномі), кодують розвиток мембран плода та плаценти, а ті, що пройшли жіночий мейоз (в геномі яйцеклітини), керують розвитком тіла

95

дитини. Тому у випадках вагітності з зиготи, в якій повністю відсутні або імпринтовані гени яйцеклітини, виникає повний або частковий міхуровий заніс (андро-генний тип), немає тіла ембріона взагалі або воно недо­статньо розвинуте. Якщо в зиготі чи в клітинах бластоцисти

відсутні або зменшені в кількості гени батьків­ського походження, страждає розвиток оболонок плода і плаценти, виникають самовільні викидні, тератоми (гіногенний тип). Це може бути наслідком помилково­го імпринтингу або триплоїдії (один материнський ге­ном і два батьківських чи навпаки), або однобатьківської дисомії (ОБД).

Порушення моноалельної експресії онкогенів, антионкогенів різних класів призведе до розвитку природ­женої онкопатології: ретинобластома (ІЗq хромосома, материнське походження), нефробластома (11q хромо­сома, материнське походження). Першими ж з описа­них імпринтингових хвороб були синдроми Прадера— Віллі (батьківське походження мутації в хромосомі 15q11—13), Ангельмана (та ж локалізація, але мате­ринське походження), до яких також зараховують син­дроми Відемана—Беквіта (11р15.5, ген інсулінозалеж-ного фактора росту, материнське походження), Расселла- Сильвера (7 хромосома, ген МЕST батьківського

походження при його експресивності у мезодермі), Міллера—Дікера (17q-, батьківське походження), син­дром Ді Джорджі (22q-, материнське походження), ко­тячого крику (5р-, батьківське походження), трихоринофалангеальний синдром Лангера — Гідеона (8q-, ма­теринське походження). У зв'язку з геномним імпринтингом виник та широко використовується новий термін — функціональна моносомія (є обидві хромосоми, але працює лише одна) на відміну від структурної повної чи часткової моносомії, що належать до хромосомних хвороб.

Відомим є вплив імпринтингу на строки прояву і тяжкість перебігу нейрофіброматозу обох типів, спин­номозкової атаксії, хореї Гентінгтона.

Імпринтинг — різні маркірування алелів одного гена, відбувається завдяки функціонуванню спеціаль­них генів імпринтингу (іmpriting bох) і порушуєть­ся в зв'язку з мутаціями в цих генах. Тобто, як кож­ний процес в організмі, iмпринтинг має генетичну при­роду поряд з епігенетичним механізмом. Імпринтинг майже завжди здійснюється під час гаметогенезу або перед злиттям пронуклеусів у зиготі і повинен мати три ознаки: по-перше, повинен існувати в одній га­меті і бути достатньо стійким у мітозі, щоб передати­ся кожній клітині ембріона; по-друге, в диплоїдній клітині мусить виявлятися тільки в одній з гомологі­чних хромосом; по-третє, iмпринтинг повинен віднов­люватися в статевих клітинах після встановлення статі ембріона.Процес наукового пізнання імпринтингу, його ме­ханізмів і впливу на нормальний чи патологічний стан регуляції експресії генів, що успадковується, тільки розпочався і прогнозує одержання нових знань і но­вих можливостей використання в практичній діяльності

ГЕННАЯ ТЕРАПИЯ

Существует тяжёлое заболевание – гиперхолестеринемия. Причиной его является недостаток или дефект генов ЛПНП-рецептора – мелких структур на поверхности клеток печени, "вытягивающих" липопротеиды низкой плотности (ЛПНП), вредные для здоровья человека, из крови и ответственных за их разрушение и ответственных за их разрушение в печени.

Джеймс Вильсон, бывший исследователь из Медицинской школы Мичиганского университета в Энн-Арбор, сделал попытку внедрить копии нормального гена ЛПНП-рецептора пациенту.

Сначала он отделил у женщины 15% печени (6 млрд. клеток), которые были выращены в 800 чашках с питательными средствами. В них был введён искусственно выведенный безвредный вирус, содержащий нужный ген. Восприняли ген около 20% растущих клеток печени. Модифицированные клетки были введены в тело пациентки с помощью катетера в вену, ведущую непосредственно к печени, где, как рассчитывал исследователь, они присоединятся к остальным клеткам и начнут делиться. Через несколько месяцев малая печёночная биопсия показала, что новый ген функционирует в некоторых из введённых клетках печени. Более того, содержание ЛПНП в крови пациентки упало на 15-30%. Вильсон сказал, что улучшение стало достаточным для того, чтобы далее обходиться только лекарствами для дальнейшего снижения уровня ЛПНП.

Решающие достижения молекулярной биологии и генетики в изучении тонкой структуры генов эукариот, их картирования на хромосомах млекопитающих, и, прежде всего человека, бурный рост в области биотехнологии и генной инженерии привели к тому, что уже в 1989 году были предприняты первые попытки лечения моногенных болезней.

Что же такое генная терапия? Подразумевает ли она лечение с помощью гена как лекарственного препарата или только лечение путём коррекции мутантного гена?

Генную терапию на современном этапе можно определить как лечение наследственных, мультифакториальных и ненаследственных (инфекционных) заболеваний путём введения генов в клетки пациентов с целью направленного изменения генных дефектов или придания клеткам новых функций.

Первоначально полагали, что генная терапия позволит исправить дефекты в гене, которые вызывают моногенные заболевания. Теоретически считали, что коррекция генного дефекта возможна как на уровне соматических, так и зародышевых (половых) клеток. Но многочисленные опыты и эксперименты внесли поправки в эти представления.

Значительно проще исправить не сам дефект в гене, то есть заменить весь мутантный ген или его повреждённый фрагмент на нормальный, а вводить в организм пациента полноценно работающий ген.

Работы по генной терапии у человека ограничены в основном соматическими тканями, поскольку манипуляции на половых или зародышевых клетках могут привести к серьёзным и непредсказуемым последствиям.

Уже разработанная и применяемая на практике методика генной терапии эффективна не только при лечении моногенных заболеваний, но и таких широко распространённых патологий мультифакториальной природы (то есть вызванными генетическими и экзогенными факторами), как злокачественные опухоли, многие виды тяжёлых вирусных, сердечно-сосудистых и др. заболеваний.

Историческая справка.

Первые клинические испытания в генной терапии прошли в мае 1989 года. Т-лимфоциты, взятые из опухоли у больного меланомой, были помечены прокариотическим геном neo, устойчивым к неомицину. Это позволило легко отделить эти клетки в культуре, а затем детально проследить их судьбу в кровотоке и избирательное накопление в опухолях.

Первым моногенным наследственным заболеванием, к которому применили методы генной терапии, стал наследственный иммунодефицит, обусловленный мутацией в гене фермента аденозиндезаминазы. 14-го сентября 1990 года в Бетесде (США) четырёхлетней девочке, страдающей этой достаточно редкой патологией (1:100000) пересадили её собственные лимфоциты, которые предварительно трансформировали in vitro геном АДА (ген АДА + ген neo + ретровирусный вектор). Лечебный эффект наблюдался в течение нескольких месяцев, после чего процедуру повторяли с интервалом в 3-5 месяцев. В результате лечения состояние пациентки настолько улучшилось, что она смогла вести нормальный образ жизни и не бояться случайных инфекций.

Большинство проектов в генной терапии (около 80%) касаются лечения онкологических заболеваний, а также ВИЧ-инфекции. Начаты клинические испытания моногенных наследственных болезней и таких как:

Семейная гиперхолестеринемия (1992)

Гемофилия В (1992)

Муковисцидоз (1993)

Болезнь Гоше (1993)

Программы генной терапии для клинических испытаний должны включать:

  • Обоснование выбора заболевания для проведения такой терапии

  • Определение типа клеток, подлежащих генетической модификации

  • Схему конструирования экзогенной ДНК

  • Обоснование биологической безопасности вводимой генной конструкции, включая опыты на культурах клеток и на модельных (трансгенных) животных.

  • Разработку её переноса в клетки пациента

  • Методы анализа работы введённых генов

  • Оценки клинического (терапевтического) эффекта

  • Возможные побочные последствия и методы их предупреждения.

В зависимости от способа введения экзогенной ДНК в геном пациента генная терапия может проводиться либо в культуре клеток (ex vivo), либо непосредственно в организме (in vivo). Клеточная генная терапия или терапия ex vivo предполагает:

  • Выделение и культивирование специфических типов клеток пациента.

  • Введение в них чужеродных генов.

  • Отбор трансфецированных клеток.

  • Реинфузию их тому же пациенту.

Генная терапия in vivo основана на прямом введении клонированных и определённым образом упакованных последовательностей ДНК в специфические ткани больного. Особенно перспективным для лечения генных болезней in vivo представляется введение генов с помощью аэрозольных или инъецируемых вакцин. Аэрозольная генотерапия разрабатывается, как правило, для лечения пульмонологических заболеваний (муковисцидоз, рак лёгких).

Методы генетической трансфекции в генной терапии.

Решающим условием успешной генотерапии является обеспечение эффективной доставки, то есть трансфекции (в широком смысле) или трансдукции (при использовании вирусных векторов) чужеродного гена в клетки-мишени, обеспечение длительного функционирования его в этих клетках и создание условий для полноценной работы гена (его экспрессии).

Трансфекция может проводиться с использованием чистой ("голой"-naked) ДНК, легированной (встроенной) в соответствующую плазмиду, или комплексированной ДНК. Комплексированная – плазмидная ДНК, соединённая с солями, белками (трансферрин), органическими полимерами, или ДНК в составе вирусных частиц, предварительно лишённых способности к репликации.

Обнажённая ДНК при внутримышечном введении способна экспрессироваться в количествах, достаточных для развития иммунного ответа на появление новых белков. Этот эффект потенциально может быть использован в целях вакцинации против определённых патогенных вирусов, однако не достаточен для большинства терапевтических целей.

Для доставки генетического материала идеальной представляется "молекулярная машина", обладающая такими качествами как:

  • высокая степень безопасности и надёжности в сочетании с достаточной дешевизной и возможностью широкого применения;

  • способность сохранять активность при движении в русле крови в течение длительного и контролируемого времени, и при этом не распознаваться иммунной системой, не вызывать воспалительных процессов;

  • высокая избирательность взаимодействия только с клетками-мишенями;

  • достаточный объём генетической информации и высокая эффективность, при которой достигается экспрессия каждой доставляемой молекулы ДНК;

  • возможность трансформировать заданное количество клеток от нескольких процентов до заведомо гарантированной 100%-й трансформации, что особенно важно при лечении онкологических заболеваний и некоторых вирусных инфекций;

  • возможность контролировать как интенсивность, так и время экспрессии на основе данных клиниеского наблюдения.

Основные методы доставки чужеродных генов в клетки разделяются на физические, химические и биологические.

ФИЗИЧЕСКИЕ: микроинъекция, инъекция струёй, электропорация, замораживание-оттаивание, биобаллистика (бомбардирование клеток каплями жидкости или суспензией частичек золота с адсорбированной плазмидой).

ХИМИЧЕСКИЕ: соли некоторых катионов, например, кальция, ДЕАЕ декстран, полилизин, липосомы.

БИОЛОГИЧЕСКИЕ: вирусные векторы.

Если проблема доставки чужеродной ДНК in vitro практически решена, а её доставка в клетки-мишени разных тканей in vivo успешно решается, то другие характеристики существующих векторных систем-стабильность интеграции, регулируемая экспрессия, безопасность-всё ещё нуждаются в серьёзных доработках.

Повысить эффективность стабильной интеграции можно

путём совершенствования генных конструкций типа рецептор-опосредованных систем;

путём создания достаточно стабильных эписомных векторов (то есть ДНК-структур, способных к длительной персистенции внутри ядер).

В последнее время особое внимание уделяется созданию векторов на базе искусственных хромосом млекопитающих. Благодаря наличию основных структурных элементов такие мини-хромосомы длительно удерживаются в клетках и способны нести полноразмерные (геномные) гены и их естественные регуляторные элементы, которые необходимы для правильной работы гена, в нужной ткани и в должное время.

Теперь остановимся подробнее на некоторых методах.

Вирусы в качестве средств доставки генетического материала.

Большинство используемых вирусов получены от диких штаммов, обладающих различной степенью патогенности, но утративших патогенные свойства благодаря удалению генов, ответственных за размножение и (или) сборку вирусных частиц. В клинической практике обычно используются ретровирусы и аденовирусы.

РЕТРОВИРУСЫ – это РНК-содержащие вирусы, репликация которых осуществляется через ДНК интермедиата. Генетическая информация вирусной частицы, полезный объём которой может составлять 9000 пар оснований, непосредственно внедряется в геном клетки-хозяина.

Большинство ретровирусов эффективны только для делящихся клеток. Эти вирусы не применимы для клеток мышечной или нервной ткани, клеток печени и легких. Исключение составляют векторы лентивирусов. К их числу относятся вирусы ВИЧ-инфекции, которые также могут использоваться в генной терапии.

АДЕНОВИРУСЫ – имеют двухцепочечную ДНК и обычно позволяют доставлять существенно больший объём полезной генетической информации. Аденовирусы не внедряются в геном хозяйских клеток, и в процессе деления информация элиминируется. Эти вирусы эффективны при трансфекции, особенно в отношении клеток дыхательных путей, где может быть достигнута более чем 50%-я трансфекция, что на порядок выше, чем в случае ретровирусов.

Недостатки использования вирусов:

инициация иммунного ответа на введение инородного белка

реактогенность самих вирусных препаратов

часто – отсутствие тканевой специфичности

трудности и дороговизна массового производства

риск опухолеродных мутаций вируса или рекомбинации активных патогенных частиц

Искусственные транспортные средства.

1.ПОЛИМЕРЫ.

Полимерные молекулы, несущие избыточный катионный заряд, могут существенно повысить эффективность трансфекции.

Определённой активностью обладают даже небольшие молекулы (протамин, диметилсульфоксид, производные имидазола, грамицидин, липополиамин).

Большую активность обычно проявляют синтетические полимеры (полиэтиленимин, полилизин, липополилизин или его конъюгаты с трансферрином, асиалоорозомукоидом, неогликопротеином, галактозой, маннозой), а также природные катионные белки (гистон Н1, галактозилированный гистон Н1, гистон Н4 в комплексе с ДНК и конъюгатом трансферрин-полилизин).

Высокая эффективность богатых лизином пептидов и белков может быть обусловлена их сходством со специфическими сигнальными последовательностями, ответственными за транспорт из цитоплазмы в ядро. Полисахариды и белковые лиганды, входящие в состав перечисленных выше комплексов, определяют их сродство со специфическими рецепторами на поверхности клеток.

Процессы взаимодействия таких комплексов с клетками имеет сходство с проникновением в клетку вирусных частиц.

2.ЛИПОСОМЫ.

Обычно используются ДНК-липидные комплексы, содержащие плазмиду с "экспрессированной" кассетой.

Преимущества ДНК-липидных комплексов по сравнению с вирусными векторами:

могут нести больший объём генетической информации;

не могут приобретать инфекционных свойств вследствие рекомбинации;

имеют более низкую вероятность инициации иммунного ответа или воспалительной реакции;

простота и дешевизна приготовления.

Особенно перспективным представляется использование фосфолипидов, например, кардиолипина и фосфатидилэтаноламина, образующих наряду с бислойными мембранами также инвертированные мицеллярные структуры, известные как кубические и гексагональные фазы, что определяет способность этих липидов инициировать слияние мембран. В присутствии катионов кальция или магния взаимодействие ДНК с фосфолипидами становится более прочным, липосомы агрегируют, и ДНК интернализуется во внутренний объём везикул. Использование высокомолекулярных катионных посредников, обеспечивающих формирование комплексов ДНК с фосфолипидами и взаимодействие этих комплексов с поверхностью клеток, потенциально могло бы улучшить их эффективность в трансфекции.

Революцией явилось введение в практику первого низкотоксичного катионного липида ДОТМА (1,2-диолеил-3-N,N,N-триметиламинопропан), синтезированного Фелгнером с соавторами. Одновременно был введён в практику новый термин "липофекция", подчёркивающий высокую эффективность генетической трансформации клеток, приближающую липосомальные препараты к инфекционным вирусным частицам.

При введении в ткани "обнажённой" ДНК обычно экспрессировалась только одна молекула из нескольких миллионов, а ДОТМА увеличивал этот параметр примерно в 1000 раз.

МЕХАНИЗМЫ ЛИПОФЕКЦИИ.

Каков механизм доставки генетического материала к клеткам-мишеням и проникновения его в ядро?

1.ДОСТАВКА ДНК К ПОВЕРХНОСТИ КЛЕТОК.

ПРОБЛЕМА: ряд высокоэффективных катионных липидов инактивируется в присутствии даже незначительных количеств плазмы крови; некоторые органы имеют эндотелиальный барьер, препятствующий проникновению липосом.

ВОЗМОЖНЫЕ РЕШЕНИЯ:

Использование высокополимерных молекул (полиэтиленгликоля, например) на поверхности липосомы, что существенно увеличивает время циркуляции липосом в русле крови, делая их недоступными (невидимыми) для преципитации иммуноглобулинами.

Для более направленной доставки поверхность липосом может нести антитела к клеткам-мишеням

Могут быть использованы специфические клеточные рецепторы, например, рецепторы фолата, являющегося маркером опухолевых клеток.

Могут использоваться вирусные белки слияния на поверхности липосом, что позволяет эффективно впрыскивать ДНК в цитоплазму (искусственные вирусы).

2.ВЗАИМОДЕЙСТВИЕ КОМПЛЕКСОВ С КЛЕТОЧНОЙ ПОВЕРХНОСТЬЮ И ПРОНИКНОВЕНИЕ В ЦИТОПЛАЗМУ.

Природа механизма проникновения ДНК в цитоплазму до сих пор окончательно не исследована.

Слияние липосом с плазматической мембраной на поверхности клетки, в результате чего внутреннее содержимое липосомы может попадать в цитоплазму, является наиболее простым и на первый взгляд очевидным механизмом транслокации ДНК.

Однако имеются серьёзные аргументы в пользу того, что проникновение ДНК в цитоплазму происходит на значительно более поздних этапах, когда большая часть липосом интернализуется в цитоплазму.

Этот процесс внешне напоминает эндоцитоз, так как в местах сорбции катионных везикул на поверхность клетки происходит инвагинация плазматической мембраны и отпочковывание внутрь цитоплазмы мембранного пузырька с катионными липосомами или ДНК-липидным комплексом во внутреннем пространстве. Инвагинация плазматической мембраны под воздействием сорбирующихся на её поверхности катионных липосом, очевидно, не требует специализированного механизма, так как наблюдается даже на поверхности эритроцитов.

3.ОСВОБОЖДЕНИЕ ДНК В ЦИТОПЛАЗМУ И ТРАНСПОРТ В ЯДРО.

Большие массы эндоцитированного материала накапливаются в областях, примыкающих к ядру. Скопление большого количества материала в околонуклеарном пространстве свидетельствует о том, что именно этап освобождения ДНК из эндосом может быть фактором, лимитирующим эффективность трансфекции.

Обычно эндосомы с захваченными внутри частицами, включая вирусы, трансформируются в лизосомы, с мембраной которых и происходит слияние вирусных частиц при низком рН. Напротив, в случае липофекции ингибирование функционирования лизосом за счёт увеличения рН хлористым аммонием или хлорохином повышало эффективность трансфекции в несколько раз. Освобождение ДНК в цитоплазму, по всей видимости, происходит из эндосом, минуя стадию образования лизосом. Более того, катионные липиды препятствуют попаданию ДНК в лизосомы.

Существует гипотеза, что, механизм освобождения ДНК основан на обмене липидами между катионной липосомой и мембранами клетки, в результате чего катионный заряд нейтрализуется, и связь ДНК с липосомой ослабевает.

При слиянии комплекса ДНК-катионный липид с мембранами анионного липида происходит фазовый переход в структуре комплекса, конечным этапом которого является распад комплекса на отдельные компоненты, состоящие из молекул ДНК, окружённых трубчатыми бислойными структурами липидов.

Одной из возможных причин низкой эффективности трансфекции может быть то, что ДНК даже после освобождения из липосомы продолжает удерживать большое количество адсорбированного катионного липида.

После освобождения в цитоплазму дальнейшее продвижение ДНК к ядру, возможно, происходит с использованием мало изученных механизмов клеточного транспорта. Возможно, что катионные липосомы способны освобождать ДНК непосредственно в ядро.

Однако липофекция эффективна только на прикреплённых культурах клеток. Комплексы в значительной степени теряют активность при взаимодействии с плазмой крови и имеют весьма ограниченное применение in vivo.

ГЕНОТЕРАПИЯ РАЗЛИЧНЫХ ЗАБОЛЕВАНИЙ

1. Моногенные наследственные заболевания.

Наследственные заболевания, генокоррекция которых находится на стадии клинических испытаний (КИ), экспериментальных разработок (ЭК) и принципиально возможна (ПВ).

Стадия клинических испытаний: иммунодефицит, гемофилия В, болень Гоше, муковисцидоз.

Стадия экспериментальных разработок: гемофилия А, эмфизема лёгких, фенилкетонурия, мышечная дистрофия Дюшенна, талассемия, серповидноклеточная анемия, болезнь Альцгеймера, болезнь Паркинсона, хронический грануломатоз, респираторный дистресс-синдром.

ПРИМЕР: Некоторые нарушения работы головного мозга (в частности, болезни Паркинсона и Альцгеймера) связаны с повреждением клеток, вырабатывающих нейромедиаторы. В результате мозг не может нормально регулировать двигательную деятельность человека.

Такие болезни лечат препаратами медиаторной природы, однако, со временем организм утрачивает чувствительность к ним. Кроме того, они могут оказывать неблагоприятное побочное действие.

В последнее время пытались лечить паркинсонизм пересадкой тканей, способных продуцировать нейромедиаторы. Трансплантатом может быть ткань мозга человеческих эмбрионов или мозгового слоя надпочечников самого больного. Но при использовании чужеродных тканей возникают проблемы тканевой несовместимости, а также юридические и этические. Помимо этого такие операции далеко не всегда приводят к хорошим результатам.

Ф. Гейдж с соавторами (Калифорнийский университет, Сан-Диего, США) в экспериментах на крысах использовал генную инженерию для борьбы с болезнями нервной системы. У животных забирали клетки кожи и вводили в них вирус, содержащий ген, кодирующий фермент тирозингидроксилазу. Фермент катализирует превращение аминокислоты тирозина в нейромедиатор L-ДОФА. Клетки со встроенным геном имплантировали в мозг крыс с предварительно разрушенным участком мозга, у которых наблюдались нарушения работы ЦНС, подобные болезни Паркинсона у человека. После пересадки модифицированных клеток у 40% животных состояние улучшилось. Авторы считают, что использование для пересадки собственных клеток реципиента перспективно для лечения больных паркинсонизмом.

Стадия принципиально возможной генокоррекции: Болезнь Хантера, синдром Гурлера, гипераммонемия, цитрулинемия, метахроматическая лекодистрофия, синдром Леш-Нихана.

2. Ненаследственные заболевания.

Одновременно с развитием исследований в области генокоррекции наследственных дефектов успешными также оказались поиски методов терапевтического использования смысловых последовательностей ДНК для лечения ненаследственных заболеваний, и главным образом злокачественных опухолей и вирусных инфекций.

ПРИМЕР: Лекарственные препараты для лечения герпеса малоэффективны. Одна из причин-недостаточная их способность проникать внутрь клеток, где находится вирус-возбудитель данного заболевания.

В НПО "Биотехнология" Минмедпрома, Институте вирусологии и Всероссийском кардиологическом центре испытан ряд препаратов, заключённых в липосомы. Это генно-инженерный а-интерферон (реаферон), биолф-62 и ацикловид. Эффективность препаратов, заключённых в липосомы, выше (по сравнению с обычными).

Основные подходы в генокоррекции онкологических заболеваний:

  • повышение иммунореактивности опухоли;

  • генетическая модификация иммунных клеток;

  • инсерция генов "чувствительности" либо "генов-самоубийц";

  • блок экспрессии онкогенов;

  • инсерция генов-супрессоров опухолей;

  • защита нормальных клеток от химиотерапии;

  • индукция синтеза противоопухулевых вещнств нормальными клетками;

  • продукция противоопухолевых рекомбинантных вакцин;

  • локальная радиопротекция нормальных тканей с помощью антиоксидантов.

Международный журнал "Омоложение" (Бельгия) опубликовал статью "Некоторые подходы к омоложению при помощи генетического вмешательства" (1985, т.13, №1-2). В статье предлагается проект следующих генно-инженерных методов борьбы со старением:

Введение генов в Bacillus cereus, кодируюших ферменты, расщепляющие поперечные связи, образующиеся в белках и нуклеиновых кислотах при старении. При помощи этих ферментов можно удалять поперечные связи в макромолекулах и тем самым эффективно бороться со старением.

Поскольку при старении особенно поражаются гены, входящие в локус гистононесовместимости, предлагается вырезать эти гены, удалять в их ДНК поперечные связи и "подремонтированные" гены снова вводить клетки старого организма с целью усиления их иммунитета и ослабления отторжения пересаженных тканей и органов.

Введение в клетки гена гулонолактоноксидазы, что позволит им синтезировать витамин С.

Амплификация генов глутатионпероксидазы, что резко усилит систему противооксидантной защиты клетки и организма и замедлит процессы старения.

Умножение количества генов системы репарации ДНК в клетке, кодирующих различные ферменты, участвующие в восстановлении повреждённых генов.

Моральные проблемы генной терапии.

Пока в области генной терапии многое неясно, трудно предусмотреть все последствия переноса генетического материала в человеческий организм, а также оценить его терапевтическую эффективность. Поэтому существует международный запрет на проведение испытаний на половых клетках и клетках ранних доимплантационных зародышей человека, чтобы предотвратить передачу неблагоприятных генетических изменений потомкам, не допустить засорения генофонда нежелательными искусственными генными конструкциями или внесения мутаций с непредсказуемыми последствиями для будущего человечества.

Ф. Андерсон и Дж. Флетчер сформулировали три условия, которые сегодня общепризнанны. Для разрешения клинических испытаний в области генной терапии необходимо доказать в экспериментах на животных, что:

Нужный ген может быть перенесён в соответствующие клетки-мишени, где он будет функционально активен достаточно продолжительное время.

Будучи перенесённым в новую для себя среду, этот ген не потеряет свою экспрессию, то есть сохранит эффективность.

Такой перенос не вызовет неблагоприятных последствий в организме.

Вместе с тем в научной литературе всё чаще и настойчивее раздаются призывы к возобновлению дискуссии о целесообразности генокоррекции зародышевых и половых клеток человека.

Вот некоторые вопросы, которые должны быть решены в рамках предлагаемой генетиками широкой дискуссии по генной терапии.

Сможет ли в будущем генная терапия обеспечить столь полноценную генокоррекцию, которая не представит угрозы для потомства?

В какой мере полезность и необходимость генотерапевтической процедуры для одной супружеской четы перевесят риск такого вмешательства для всего человечества?

Сколь оправданы будут эти процедуры на фоне грядущего перенаселения планеты?

Как будут соотноситься генноинженерные мероприятия на человеке с проблемами гомеостаза общества и биосферы?

Таким образом, генетическая революция, апофеозом которой явилась генотерапия, не только предлагает реальные пути лечения тяжёлых наследственных и ненаследстевнных недугов, но и в своём стремительном развитии ставит перед обществом новые проблемы, решение которых настоятельно необходимо уже в ближайшем будущем.

44