Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
План лекц..doc
Скачиваний:
102
Добавлен:
11.05.2015
Размер:
14.76 Mб
Скачать

Тема лекций №№ 13,14: Строение вещества.

I. Строение атома.

Вопросы:

1. Доквантовые модели атома (Томсона, Резерфорда, Бора).

2. Современные теории строения атома:

- протонно-нейтронная,

- квантово-механическая.

3. Радиоактивность: понятие, виды, характеристики.

4. Закономерности заполнения электронных орбиталей атомов.

Электронные схема, формулы.

Самостятельная работа:

1. Первые (до Томсона) модели атома.

2. Спектры испусканния электронов в полупроводниках, светодиоды.

3. Радиоактивность: понятие, виды, характеристики.

I. Строение атома

1. Доквантовые модели атома (Томсона, Резерфорда, Бора).

2. Протонно-нейтронная теория строения атома.

N(+11p) = Nпорядковый(хим. элемента)

m(+11p) + m(01n) = m (атома), N(+11p) + N(01n) = Ar(атома)

Таблица 1. Характеристики основных элементарных частиц атома

Элементарная ч-ца Абс.масса, кг Отн. масса, а.е.м. Электр.заряд, Кл Отн.заряд

Протон (+11Р) 1,673. 10-27 1,0073 + 1,602.10-19 +1

Нейтрон ( 01n) 1,675.10-27 1,0087 0 0

Электрон (е-) 9,109.10-31 0,00055 - 1,602.10-19 -1

2. Квантово-механическая теория строения атома.

2.1. Три основополагающие идеи (положения) квантовой механики:

1. Квантование энергии электронов в атоме – принцип дискретности физических величин в микромире (микроявлений и микрообъектов), т.е. физические величины могут изменяться не непрерывно, а скачкообразно, принимая только определенные – дискретные значения.

О таких величинах говорят, что они квантуются.

Макс Планк (нем. физик,1900 г.):

тепловое излучение (абсолютно черного тела) состоит из дискретных порций – квантов энергии.

Значение одного кванта энергии E = = Eион + Eкин = Eион + mv2/ 2.

h (постоянная Планка)мера дискретности, которая как бы определяет границу между микро- и макромирами. Это одна из фундаментальнейших постоянных природы. Она входит во все квантово-механические соотношения (h = 6,626 .10 -34 Дж .с); ν = с/λ .

2. Двойственная природа (корпускулярно–волновой дуализм) электрона.

Луи де Бройль, фр. физик – квантовый механик, 1924 г.:

при своем движении электрон (е-), как и др. частицы микромира (микрочастицы), обладает корпускулярно–волновой двойственностью, т.е.

одновременно является и дискретной (отдельной) материальной частицей с массой покоя (m), зарядом (z), размерами, и волной, имея все ее свойства (дифракция, интерференция и др.).

Этот постулат выражается уравнением волны де Бройля: λ = h/ mv,

т.е.: частице, имеющей массу m и движущейся со скоростью v, соответствует волна длиной λ.

Постоянная Планка h связывает воедино корпускулярный и волновой характер движения материи.

В одних условиях на первый план выступают волновые свойства объектов, в других – корпускулярные, в третьих – те и другие одновременно. Свободный или связанный электрон нельзя назвать строго ни волной ни частицей. Электрон – это частица, если речь идет о дискретности, но это и волна, если обсуждается характер его движения.

Из уравнения де Бройля следует: чем меньше масса материальной частицы и больше ее скорость, тем характернее для нее волновые свойства.

Создать наглядную модель микрообъекта принципиально невозможно!

3. Принцип неопределенности Гейзенберга

(1927 г.):

(Вернер Гейзенберг, нем. физик - квантовый механик):

Для электрона, как для любой микрочастицы-волны, в принципе невозможно одновременно с одинаковой точностью измерить координату (местонахождение) и скорость движения (или импульс) - в любой момент времени.

Математическим выражением этого принципа является соотношение:

x = m .v > h / 2π,

где x – неопределенность (погрешность измере-ния) положения электрона (любой микрочасти-цы) по оси ОХ,

v – неопределенность в измерении его скорос-ти (или импульса ∆р = m .v).

Чем меньше значение x, т.е. чем точнее определяем положение микрообъекта (в частности, электрона), тем больше неопределенность (ошибка) в определении значения его скорости или импульса, и наоборот.