Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекция схемотехника триггеры

.docx
Скачиваний:
189
Добавлен:
11.05.2015
Размер:
243.73 Кб
Скачать

Лекция. Элементы схемотехники ЭВМ. Триггеры.

Триггеры

Триггером называется устройство, имеющее два устойчивых состояния и способное под действием входного сигнала скачком переходить из одного устойчивого состояния в другое. Триггер - это простейший цифровой автомат с памятью и способностью хранить 1 бит (binary digit - двоичный разряд) информации. В основе любого триггера находится регенеративное кольцо из двух инверторов. Триггер имеет два выхода: прямой Q и инверсный Q. Число входов зависит от структуры и функций, выполняемых триггером. В настоящее время существует несколько разновидностей триггерных схем. Они появились как результат разработки новых цепей запуска.

По способу записи информации триггеры делятся на асинхронные (несинхронизируемые) и синхронные (синхронизированные). У асинхронных триггеров запись информации (переключение триггера) происходит под действием информационных сигналов. Такие триггеры имеют только информационные входы. У синхронных триггеров запись информации происходит под действием разрешающих сигналов синхронизации.

Синхронные триггеры бывают: со статическим управлением записью, с динамическим управлением записью и двухступенчатые.

Синхронные триггеры со статическим управлением записью принимают информационные сигналы все время, пока действует импульс синхронизации. Следовательно, за время действия импульса синхронизации переключение триггера может быть многократным. У таких триггеров вход С - статический.

Синхронные триггеры с динамическим управлением записью принимают только те информационные сигналы, которые были на информационных входах к моменту прихода синхронизирующего импульса. У таких триггеров вход С - динамический.

Синхронные двухступенчатые триггеры состоят из двух ступеней. Запись информации в первую ступень производится с появлением синхронизирующего импульса, а во вторую ступень - после окончания действия синхронизирующего импульса. Следовательно, двухступенчатые триггеры задерживают выходную информацию на время, равное длительности синхронизирующего импульса. Такие триггеры называют еще триггерами с внутренней задержкой.

В составе серий ТТЛ выпускаются микросхемы, содержащие RS-, D- и JK-триггеры. Приняты следующие обозначения входов триггеров:

  • S - раздельный вход установки триггера в единичное состояние по прямому выходу Q (Set-установка);

  • R - раздельный вход сброса триггера в нулевое состояние по прямому выходу Q (Reset-сброс);

  • D - информационный вход (Data input). На него подается информация, предназначенная для записи в триггер;

  • T - счетный вход (Toggle-переключатель);

  • C - вход синхронизации (Clock input).

Назначение входов J и К такое же, как и входов S и R (установка и сброс). Буквы J и К. были выбраны в свое время авторами как соседние в алфавите (сравните S и R).

2.5.1. RS-триггеры

RS-триггер - это триггер с раздельной установкой состояний логического нуля и единицы (с раздельным запуском). Он имеет два информационных входа S и R. По входу S триггер устанавливается в состояние Q=l (/Q=0), а по входу R - в состояние Q = О (/Q = 1).

Асинхронные RS-триггеры. Они являются наиболее простыми триггерами. В качестве самостоятельного устройства применяются редко, но являются основой для построения более сложных триггеров. В зависимости от логической структуры различают RS-триггеры с прямыми и инверсными входами. Их схемы и условные обозначения приведены на рис. 2.37. Триггеры такого типа построены на двух логических элементах: 2 ИЛИ-НЕ - триггер с прямыми входами (рис. 2.37, а), 2 И-НЕ - триггер с инверсными входами (рис. 2.37, б). Выход каждого из логических элементов подключен к одному из входов другого элемента, что обеспечивает триггеру два устойчивых состояния.

  Рис. 2.37. Асинхронные RS-триггеры: а - RS-триггер на логических элементах ИЛИ-НЕ и условное обозначение; б - RS-триггер на логических элементах И-НЕ и условное обозначение.

Состояния триггеров под воздействием определенной комбинации входных сигналов приведены в таблицах функционирования (состояний) (табл. 2.18).

Таблица 2.18. Состояния триггеров.

Входы

Выходы

S

R

Логика И-НЕ

Логика ИЛИ-НЕ

Qn+1

/Qn+1

Qn+1

/Qn+1

0

0

X

Qn

/Qn

1

0

0

1

1

0

0

1

1

0

0

1

1

1

Qn

/Qn

X

В таблицах Qn (/Qn) обозначены уровни, которые были на выходах триггера до подачи на его входы так называемых активных уровней. Активным называют логический уровень, действующий на входе логического элемента и однозначно определяющий логический уровень выходного сигнала (независимо от логических уровней, действующих на остальных входах). Для элементов ИЛИ-НЕ за активный уровень принимают высокий уровень - 1, а для элементов И-НЕ - низкий уровень - О. Уровни, подача которых на один из входов не приводит к изменению логического уровня на выходе элемента, называют пассивными. Уровни Qn+1(/Qn+1) обозначают логические уровни на выходах триггера после подачи информации на его входы. Для триггера с прямыми входами при подаче на вход комбинации сигналов S=1, R=0 на выходе получим Qn+1=1 (/Qn+1=0). Такой режим называют режимом записи логической единицы.

Если со входа S снять единичный сигнал, т. е. установить на входе S нулевой сигнал, то состояние триггера не изменится. Режим S=0, R=0 называют режимом хранения информации, так как информация на выходе остается неизменной.

При подаче входных сигналов S=0, R=1 произойдет переключение триггера, а на выходе будет Qт+1=0 (/Qn+1=1). Такой режим называют режимом записи логического нуля (режим сброса). При S=R=1 состояние триггера будет неопределенным, так как во время действия информационных сигналов логические уровни на выходах триггера одинаковы (Qn+1=/Qn+1=0), а после окончания их действия триггер может равновероятно принять любое из двух устойчивых состояний. Поэтому такая комбинация S=R=1 является запрещенной.

Для триггера с инверсными входами режим записи логической единицы реализуется при /S=0, /R=1, режим записи логического нуля - при /S=1, /R=0. При /S=/R=1 обеспечивается хранение информации. Комбинация входных сигналов /S = /R = 0 является запрещенной.

Микросхема ТР2 включает четыре асинхронных RS-триггера, причем два из них имеют по два входа установки /S. Управляющим сигналом является уровень логического нуля (низкий уровень), так как триггеры построены на логических элементах И-НЕ с обратными связями (т. е. входы инверсные статические). Установка триггера в состояние высокого или низкого уровня осуществляется кодом 01 или 10 на входах /S и /R со сменой кода информации. Если на входах /S1 = /S2 = /R = 0, то на выходе Q появится напряжение высокого уровня - 1. Однако это состояние не будет зафиксировано, «защелкнуто»; если входные уровни 0 убрать, на выходе Q появится неопределенное состояние. При подаче на входы /S1 = /S2 = R = 1 напряжение на выходе останется без изменения. Достаточно на одном из входов /S триггера установить низкий уровень напряжения - 0, а на входе /R высокий уровень напряжения - 1, и триггер установится в состояние высокого уровня Qn+1 = 1. Табл. 2.19 дает состояния одного из триггеров микросхемы TP2.

Таблица 2.19. Состояния триггера ТР.

Входы

Выход

/S1

/S2

/S

/R

Qn+1

1

1

1

1

Qn

0

1

0

1

1

1

0

0

0

1

1

1

0

0

0

1

0

0

1*

1

0

0

0

Примечание: 1* - неустойчивое состояние, может не сохраняться после снятия "0" со входов /S и /R.

Временные диаграммы его работы, а также цоколевка представлены на рис. 2.38

  Рис. 2.38. Условное обозначение, цоколевка и временные диаграммы работы микросхем типа ТР.

Основные параметры приведены в табл. 2.20б.

Синхронные RS-триггеры. Триггерные ячейки - это основа делителей частоты, счетчиков и регистров. В этих устройствах записанную ранее информацию по специальному сигналу, называемому тактовым, следует передать на выход и переписать в следующую ячейку. Для осуществления такого режима в RS-триггер необходимо ввести дополнительный вход С, который может быть статическим или динамическим, т. е. получим синхронный RS-триггер.

Схема синхронного RS-триггера на логических элементах И-НЕ со статическим управлением записью (вход С - статический) и его условное обозначение приведены на рис. 2.39, а.

  Рис. 2.39. Синхронные RS-триггеры: а - синхронный RS-триггер на элементах И-НЕ и условное обозначение; б - синхронный RS-триггер на элементах ИЛИ-НЕ и условное обозначение.

Элементы DD1.1 и DD1.2 образуют схему управления, а элементы DD1.3 и DD1.4 - асинхронный RS-триггер. Иногда такой триггер называют RST-триггером (если вход С считать тактовым входом Т).

Триггер имеет прямые статические входы, поэтому управляющим сигналом является уровень логической единицы.

Если на вход С подать сигнал логической единицы C=1, то работа триггера аналогична работе простейшего асинхронного RS-триггера. При C=0 входы S и R не оказывают влияние на состояние триггера. Комбинация сигналов S=R=C=1 является запрещенной. Табл. 2.21 отражает состояния такого триггера.

Синхронный RS-триггер, выполненный на элементах ИЛИ-НЕ, будет иметь инверсные статические входы (рис. 2.39,б). Его функционирование будет определяться таблицей состояний при /C=0 (табл. 2.22). Запрещенной комбинацией входных сигналов будет комбинация /S=/R=/C=0.

Таблица 2.21. Состояния триггера

Входы

Выходы

S

R

C

Qn+1

/Qn+1

0

0

0

Qn

/Qn

1

0

1

1

0

0

1

1

0

1

1

1

1

X

Таблица 2.22. Состояния триггера

Входы

Выходы

/S

/R

/C

Qn+1

/Qn+1

1

1

1

Qn

/Qn

0

1

1

1

0

1

0

1

0

1

0

0

0

X

Синхронный RS-триггер с динамическим управлением записью функционирует согласно сигналам, которые были на информационных входах S и R к моменту появления перепада на входе С. Схема такого триггера, его условное обозначение даны на рис. 2.40.

  Рис. 2.40. Синхронный RS-триггер с динамическим управлением на логических элементах И-НЕ и условное обозначение.

Элементы DD1.1 ... DD1.4 образуют схему управления, а DD1.5 и DD1.6 - асинхронный RS-триггер, выполняющий роль элемента памяти. У данного триггера входы /S и /R инверсные статические (управляющий сигнал - уровень логического нуля), вход С - прямой динамический. Новое состояние триггера устанавливается положительным перепадом напряжения (от уровня логического нуля до уровня логической единицы) на входе С в соответствии с сигналами на информационных входах /S и /R. Функционирование триггера при некоторых комбинациях входных сигналов можнопроследить с помощью таблицы состояний (табл. 2.23).

Таблица 2.23.

Входы

Внутренние выходы

Выходы

/S

/R

C

A1

A2

A3

A4

Q

/Q

1

1

X

0

1

1

0

0

1

0

1

X

1

1

1

0

0

1

0

1

_/

1

0

1

0

1

0

1

0

_/

1

0

1

1

1

0

1

0

X

0

1

1

1

1

0

1

0

_/

0

1

0

1

0

1

Синхронный двухступенчатый RS-триггер (master-slave, что переводится «мастер-помощник») состоит из двух синхронных RS-триггеров и инвертора, рис. 2.41, а. Входы С обоих триггеров соединены между собой через инвертор DD1.1. Если C=1, то первый триггер функционирует согласно сигналам на его входах S и R. Второй триггер функционировать не-может, т. к, у него C=0. Если C=0, то первый триггер не функционирует, а для второго триггера C=1, и он изменяет свое состояние согласно сигналам на выходах первого триггера.

  Рис. 2.41. Синхронный двухступенчатый RS-триггер: a - схема триггера на логических элементах И-НЕ; б - условное обозначение и временные диаграммы тактового импульса.

На рис. 2.41, б показано, что двухступенчатым триггером управляет полный (фронтом и срезом) тактовый импульс С. Если каждый из триггеров имеет установку положительным перепадом, то входная RS-комбинация будет записана в первую ступень в момент прихода положительного перепада тактового импульса С. В этот момент во вторую ступень информация попасть не может. Когда придет отрицательный перепад тактового импульса С, на выходе инвертора DD1.1 он появится как положительный. Следовательно, положительный перепад импульса /С перепишет данные от выходов первого триггера в триггер второй ступени. Сигнал на выходе появится с задержкой, равной длительности тактового импульса.

Очень часто необходимо использовать триггер для деления частоты входной последовательности импульсов на два, т. е. производить переключение триггера в новое состояние каждым входным импульсом (фронтом или спадом). Такой триггер называют счетным, или T-триггером (от англ. Toggle). Он имеет один управляющий вход Т. В сериях выпускаемых микросхем T-триггеров нет. Но триггер такого типа может быть создан на базе синхронного RS-триггера с динамическим управлением, если прямой выход Q соединить с инверсным входом /S, а инверсный выход /Q соединить с инверсным входом /R. На вход синхронизации С подать входную последовательность импульсов (т. е. это будет T-вход). На рис. 2.42 показана схема такого триггера и временные диаграммы его работы.

  Рис. 2.42. T-триггер, его обозначение и временные диаграммы.

Аналогичным образом Т-триггер может быть собран на синхронном двухступенчатом RS-триггере.

D-триггеры

D-триггером называется триггер с одним информационным входом, работающий так, что сигнал на выходе после переключения равен сигналу на входе D до переключения, т. е. Qn+1=Dn Основное назначение D-триггеров - задержка сигнала, поданного на вход D. Он имеет информационный вход D (вход данных) и вход синхронизации С. Вход синхронизации С может быть статическим (потенциальным) и динамическим. У триггеров со статическим входом С информация записывается в течение времени, при котором уровень сигнала C=1. В триггерах с динамическим входом С информация записывается только в течение перепада напряжения на входе С. Динамический вход изображают на схемах треугольником. Если вершина треугольника обращена в сторону микросхемы (прямой динамический вход), то триггер срабатывает по фронту входного импульса, если от нее (инверсный динамический вход) - по срезу импульса. В таком триггере информация на выходе может быть задержана на один такт по отношению к входной информации.

D-триггеры могут быть построены по различным схемам. На рис. 2.43,а показана схема одноступенчатого D-триггера на элементах И-НЕ и его условное обозначение. Триггер имеет прямые статические входы (управляющий сигнал - уровень логической единицы). На элементах DD1.1 и DD1.2 выполнена схема управления, а на элементах DD1.3 и DD1.4 асинхронный RS-триггер.

Рис. 2.43. Синхронный D-триггер:

а - схема D-триггера на элементах И-НЕ и условное обозначение; б - временные диаграммы; в - преобразование синхронного RS-триггера в синхронный D-триггер; г - временные диаграммы записи и считывания.

Если уровень сигнала на входе С = 0, состояние триггера устойчиво и не зависит от уровня сигнала на информационном входе D. При этом на входы асинхронного RS-триггера с инверсными входами (DD1.3 и DD1.4) поступают пассивные уровни /S = /R = 1.

При подаче на вход синхронизации уровня С = 1 информация на прямом выходе будет повторять информацию, подаваемую на вход D.

Следовательно, при C=0 Qn+1=Qn, а при C=l Qn+1=Dn. Временные диаграммы, поясняющие работу D-триггера, приведены на рис. 2.43,б.

D-триггер возможно получить из синхронного RS-триггера, если ввести дополнительный инвертор DD1.1 между входами S и R (рис. 2.43,в). В таком триггере состояние неопределенности для входов S и R исключается, так как инвертор DD1.1 формирует на входе R сигнал /S. Временные диаграммы записи в D-триггер напряжений высокого и низкого входных уровней и их считывание приведены на рис. 2.43,г. Обязательным условием правильной работы D-триггера является наличие защитного временного интервала после прихода импульса на вход D перед тактовым импульсом (вход С). Этот интервал времени tn+1-tn зависит от справочных данных на D-триггер.

Комбинированные D-триггеры имеют дополнительные входы асинхронной установки логических 0 и 1 - входы S и R. Схема и условное обозначение одного такого триггера представлены на рис. 2.44. Триггер собран на шести элементах И-НЕ по схеме трех RS-триггеров. Входы /S и /R служат для первоначальной установки триггера в определенное состояние.

  Рис. 2.44. Комбинированный D-триггер и его условное обозначение.

Если C=D=0, установить /S=0, а /R=1, то элементы DD1.1 ... DD1.5 будут закрыты, а элемент DD1.6 будет открыт, т. е. Q=l, /Q=0. При снятии нулевого сигнала со входа /S, откроется элемент DD1.1, состояние остальных элементов не изменится. При подаче единичного сигнала на вход С на всех входах элемента DD1.3 будут действовать единичные сигналы и он откроется, а элемент DD1.6 закроется: /Q = 1. Теперь на всех входах элемента DD1.5 действуют единичные сигналы и он будет открыт: Q = 0. Следовательно, после переключения триггера сигнал на выходе Q стал равным сигналу на входе D до переключения: Qn+1=Dn=0. После снятия единичного сигнала со входа С состояние триггера не изменится.

D-триггер с динамическим входом C может работать как T-триггер. Для этого необходимо вход С соединить с инверсным выходом триггера /Q (рис. 2.45,а). Если на входе D поставить дополнительный двухвходовый элемент И и инверсный выход триггера /Q соединить с одним из входов элемента И, а на второй вход подать сигнал EI, то получим T-триггер с дополнительным разрешением по входу (рис. 2.45,б).