Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекция 13.docx
Скачиваний:
149
Добавлен:
15.05.2015
Размер:
290.43 Кб
Скачать

§4 Волновая функция и ее физический смысл

            Дифракционная картина, наблюдающаяся для микрочастиц, характеризуется неодинаковым распределением потоков микрочастиц в различных направлениях - имеются минимумы и максимумы в других направлениях. Наличие максимумов в дифракционной картине означает, что в этих направлениях распределяются волны де Бройля с наибольшей интенсивностью. А интенсивность будет максимальной, если в этом направлении распространяется максимальное число частиц. Т.е. дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности в распределении частиц: где интенсивность волны де Бройля максимальная, там и частиц больше.

            Волны де Бройля в квантовой механике рассматриваются как волны вероятности, т.е. вероятность обнаружить частицу в различных точках пространства меняется по волновому закону ( т.е. е-iωt). Но для некоторых точек пространства такая вероятность будет отрицательной (т.е. частица не попадает в эту область). М. Борн ( немецкий физик ) предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, которую также называют волновой функцией или -функцией (пси - функцией).

Волновая функция - функция координат и времени.

            Квадрат модуля пси-функции определяет вероятность того, что частица будет обнаружена в пределах объема dV - физический смысл имеет не сама пси-функция, а квадрат ее модуля.

Ψ* - функция комплексно сопряженная с Ψ

 (z = a +ib, z* =a- ib, z*- комплексно сопряженное)

Если частица находится в конечном объеме V, то возможность обнаружить ее в этом объеме равна 1, (достоверное событие)

                                   Р = 1  

В квантовой механике принимается, что Ψ и АΨ, где А = const, описывают одно и то же состояние частицы. Следовательно,

- условие нормировки

интеграл по , означает, что он вычисляется по безграничному объему (пронстранству).

 - функция должна быть

1) конечной (так как Р не может быть больше1),

2) однозначной (нельзя обнаружить частицу при неизменных условиях с вероятностью допустим 0,01 и 0,9, так как вероятность должна быть однозначной).

  • непрерывной (следует из неприрывности пространства. Всегда имеется вероятность обнаружить частицу в разных точках пространства, но для разных точек она будет разная),

  • Волновая функция удовлетворяет принципу суперпозиции: если система может находится в различных состояниях, описываемых волновыми функциями 1,2...n, то она может находится в состоянии , описываемой линейной комбинаций этих функций:

                             

Сn (n=1,2...) - любые числа.

С помощью волновой функции вычисляются средние значения любой физической величины частицы

               

 

§5 Уравнение Шредингера

 

Уравнение Шредингера, как и другие основные уравнения физики (уравнения Ньютона, Максвелла), не выводится, а постулируется. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия точно согласуются с экспериментальными данными.

                                (1)

- Временное уравнение Шредингера.

 - набла - оператор Лапласа 

 - потенциальная функция частицы в силовом поле,

Ψ(y,z,t) - искомая функция

Если силовое поле, в котором движется частица, стационарно (т.е. не изменяется с течением времени), то функция U не зависит от времени и имеет смысл потенциальной энергии. В этом случае решение уравнения Шредингера (т.е. Ψ - функция) может быть представлено в виде произведения двух сомножителей - один зависит только от координат, другой - только от времени:

                        (2)

Е - полная энергия частицы, постоянная в случае стационарного поля.

Подставив (2)  (1):

                                        (3)

 

- Уравнение Шредингера для стационарных состояний.

Имеется бесконечно много решений. Посредством наложения граничных условий отбирают решения, имеющие физический смысл.

            Граничные условия:

 волновые функции должны быть регулярными, т.е.

1)конечными;

2) однозначными;

3) непрерывными.

            Решения, удовлетворяющие уравнению Шредингера, называются собственными функциями, а соответствующие им значения энергии - собственными значениями энергии. Совокупность собственных значений называется спектром величины. Если Еn принимает дискретные значения, то спектр - дискретный, если непрерывные - сплошной или непрерывный.