Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаб.упр.РБ.doc
Скачиваний:
102
Добавлен:
17.05.2015
Размер:
28.37 Mб
Скачать

3.4. Активность и единицы ее измерения. Удельная, объемная и поверхностная активность.

Активность характеризует интенсивность распада радиоактивного препарата и измеряется количеством распадающихся за одну секунду ядер в данном образце. Чем больше радиоактивных превращений происходит за одну секунду в образце, тем выше его активность и тем более интенсивное излучение он создает. Поэтому содержание радионуклида в образце, а также уровень его загрязнения радионуклидами удобно измерять не единицами массы, а активностью.

Так, например, если взять Nатомов какого-либо радиоактивного изотопа, характеризующегося постоянной распада, то за время 1 с будет распадаться.N, называемая активностью характеризует интенсивность излуче5ния, создаваемого данным образцом.

Т.к. N = ,

где - масса образца, - молярная масса радионуклида, - число Авогадро, то (5)

Из выражения 5 следует, что активность образца тем выше, чем больше его масса.

С другой стороны, активность может быть определена по формуле: , (6)

которая указывает, что активность не только зависит от массы изотопа, но и от его периода полураспада Т. Поэтому при равном количестве атомов радиоактивного изотопа в образцах самое интенсивное излучение будет создавать образец более коротким периодам полураспада.

Международной единицей активностью является 1 Беккерель (1 Бк= 1). Внесистемной единицей измерения активности является 1 кюри (1Ки= 3,7.1010Бк), что соответствует активности 1г радия – 226.

Так как в результате распада число атомов N0радионуклида уменьшается в соответствии с основным законом радиоактивного распада, то и активность образца также уменьшается со временем по этому закону:

, (7)

где а0начальная активность,а - активность через время наблюденияt.

Если время наблюдения tсравнимо по порядку величины с периодом полураспадаТ,то можно использовать выражение:

, (8)

где к=t/T- число периодов полураспада.

Для характеристики степени загрязнения радионуклидами каких-либо объектов используются следующие величины:

  1. Удельная активность (Аm) – активность 1кгтвердых или сыпучих образцов.Аm =

  2. Объемная активность ( Аv) – активность 1л или 1м3жидких или газообразных образцов.

.

  1. Поверхностная активность () – активность единицы площади поверхности..

4.1. Детекторы и их типы. Основные принципы детектирования ионизирующих излучений.

Радиоактивные излучения не воспринимаются органами чувств живых оргнизмов и могут быть обнаружены (детектированы) при помощи приборов, работа которых основана на физико-химических эффектах, возникающих при взаимодействии излучений с веществом.

Детектор, или датчик - является главным конструктивным элемен­том любых приборов, применяющихся для обнаружения и измерения радиоактивных излучений.

Принцип работы любого детектора определяется характером эффек­тов, вызываемых взаимодействием излучения с веществом детектора. Как известно, прохождение ионизирующих излучений через вещество сопровождается потерей их энергии. Детектор преобразует эту энергию в электрический сигнал или специфический химический продукт.

В зависимости от типа рабочего вещества, заполняющего простран­ство внутри детектора, все детекторы можно подразделить на газо­вые, сцинцилляционные химические и фотографические.

Наиболее широкое применение в дозиметрической аппаратуре полу­чили газовые детекторы благодаря их высокой надежности, простоты изготовления и малых габаритов.

Сцинцилляционный, химический и фотографический методы детек­тирования ионизирующих излучений применяются, как правило, в спе­циальных случаях.

Чем выше интенсивность излучения, тем большую энергию поглоща­ет детектор и тем значительнее степень ионизации вещества детектора. Наиболее точными детекторами являются такие, в которых су­ществует линейная зависимость между поглощенной энергией излуче­ния и формирующимся сигналом или количественным выходом продукта.

Газовые детекторы

Газовые детекторы основаны на ионизации газа под действием ионизирующих излучений, к ним относятся ионизационные камеры и газоразрядные счетчики. В ионизационной камере электроны и положительно заря­женные ионы, возникающие под действием излучения, перемещаются к электродам под влиянием электрического поля, существующего в каме­ре, и создают электрический ток во внешней цепи ( рис.5). Величина тока зависит от степени ионизации воздуха, которая в свою очередь определяется видом и мощностью источника излучения. Зависимость

Рис. 5

тока ионизации от напряжения на электродах определяет­ся вольтамперной характеристикой ионизационной камеры (рис. 6).

Сцинцилляционные детекторы.

Сцинцилляционный счетчик состоит из сцинциллятора - вещества, способного испускать видимое излучение под действием заряженных частиц, и фотоэлектронного умножителя (ФЭУ), в котором энергия возникающих световых вспышек (сцинтилляций) преобразуется путам фотоэффекта в импульсы электрического тока (рис.6).

Рис. 6

В качестве сцинцилляторов используются неорганические кристаллы, органические пласт­массы в жидкости, чистые инертные газы (гелий, аргон, криптон) и их смеси. В дозиметрической аппаратуре применяются в основном твердые органические сцинцилляторы. Сцинцилляционные счетчики являются наиболее точными детекторами ионизирующих излучений из всех пере­численных выше. Они позволяют регистрировать все виды излучений, измерять энергии исследуемых частиц или квантов, имеют высокую разрешающую способность и высокую эффективность регистрации -излучения.

Химические детекторы

Принцип действия химических детекторов основан на количествен­ном измерении продуктов химических реакций, протекающих под дей­ствием ионизирующих излучений. Химические детекторы подразделя­ются на жидкостные с использованием водных растворов и жидкостные с использованием хлорзамеценных углеводородов.

Первый тип химических детекторов основан на специфических реакциях, происходящих между растворенными в воде веществами и продуктами радиолиэа воды, образующимися под действием ионизирую­щих излучений.

Радиолиз - разложение молекулы воды на свободные радикалы и продукты их рекомбинации

В чем сущность процесса радиолиза? Под действием ионизирующих излучений от молекул воды отрывается электрон и образуется положительный ион:

.

Освободившийся электрон захватывается нейтральной молекулой воды и образуется отрицательный ион:

.

Образовавшиеся ионы воды неустойчивы и самопроизвольно распадаются:

;

.

Образовавшиеся свободные радикалы и О не несут электрического заряда, но имеет ненасыщенные химические валентности и поэтому обладают высокой реакционной способностью. Радикал ОН0 имеет окислительные свойства, а радикал Н0 - восстановительные. Чем больше плотность ионизации, тем выше концентрация радикалов.

Они вступают в реакции с растворенным веществом детектора и дают продукты, количественная оценка которых позволяет судить о дозе поглощенной энергии.

Фотографические детекторы

Фотографические детекторы основаны на свойстве ионизирующих излучений воздействовать на чувствительный слой фотоматериалов аналогично видимому свету. Для детектирования обычно применяют рентгеновские пленки, представляющие собой чувствительную к иони­зирующему излучению эмульсию, нанесенную с одной или двух сторон на целлулоидную подложку. Облученная и обработанная в фотолаборатории пленка имеет опре­деленную оптическую плотность почернения по величине которой опре­деляется поглощенная доза. Плотность почернения может быть изме­рена с помощью фотометра.

Основным недостатком фотографических детекторов служит зависи­мость степени почернения эмульсии от энергии фотонов. Этот метод можно уверенно применять лишь при энергии квантов более 200 кэВ при условии использования комбинированных фильтров.

К числу достоинств фотографических детекторов следует отнести возможность массового применения для индивидуального контроля доз, документальность регистрации полученной дозы, возможностью совместной и раздельной регистрации дозы от - и - излу­чений, невосприимчивость к резкому изменению температур.

Недостатками фотографических детекторов являются малая чув­ствительность пленок, низкая точность, зависимость показаний от условий обработки пленки и громоздкость такой обработки, не­возможность повторного использования облученных пленок.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]