Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Никитин, Бойко - Методы и средства измерений, испытаний и контроля - 2004

.pdf
Скачиваний:
374
Добавлен:
11.08.2013
Размер:
10.99 Mб
Скачать

Рисунок 16.35 - Преобразователь скоростного напора

Рисунок 16.36 - Турбинный преобразователь расхода

Турбинные преобразователи расхода. Действие турбинных преобразователей расхода основано на преобразовании частоты вращения крыльчатки, помещенной в поток. При турбулентном движении среды частота вращения связана с объемным расходом линейной зависимостью. Применяют крыльчатки различной формы, но наибольшее распространение получили спиральные крыльчатки, как наиболее простые по конструкции и обеспечивающие высокую точность (0,1-0,5 %). Преобразователи со спиральными крыльчатками изготовляются на расходы жидкостей от 10-2 до 7ּ103 м3/ч, для газов до 20ּ103 м3/ч. На рисунке 16.36 иллюстрируется работа турбинного преобразователя расхода с индукционным преобразователем частоты вращения крыльчатки.

Поток жидкости вращает крыльчатку, в корпусе которой находится постоянный магнит. Если трубопровод выполнен из немагнитного материала, то при вращении крыльчатки происходит модуляция магнитного потока в наружном магнитопроводе. В результате с выходной обмотки снимается напряжение, частота которого пропорциональна измеряемому объемному расходу.

Инерционность таких преобразователей невелика, постоянная времени зависит от типа и конструкции вращающегося элемента и составляет 1-50 мс.

Турбинные преобразователи применяются для измерений не только объемного, но и массового расхода. В последнем случае преобразователи имеют более сложную конструкцию. При измерении массового расхода обычно осуществляют искусственное закручивание контролируемого потока с помощью принудительно вращаемой крыльчатки. При этом подводимая мощность и вращающий момент пропорциональны массовому расходу продукта.

Другой разновидностью турбинных преобразователей массового расхода являются преобразователи, в которых предварительно закрученный поток воздействует на другую крыльчатку, создавая крутящий момент, пропорциональный массовому расходу.

Индукционные преобразователи расхода. Для измерения расхода электропроводящей жидкости широко используются индукционные преобразователи. Их действие основано на том, что если проводящая жидкость движется в постоянном или переменном магнитном поле, направление которого не совпадает с направлением движения жидкости, то в ней индуцируется ЭДС, пропорциональная скорости ее движения. Эта ЭДС является причиной возникновения токов в жидкости и соответствующего реактивного магнитного поля, которые также пропорциональны скорости движения жидкости, а следовательно, расходу.

Для бесконтактного измерения расхода могут применяться индукционные преобразователи, реагирующие на значение реактивного магнитного поля вихревых токов в жидкости, но наибольшее распространение на практике благодаря простоте конструкций и высокой чувствительности получили контактные индукционные расходомеры, в которых измеряется разность потенциалов между помещенными в жидкость электродами. Принцип действия таких расходомеров иллюстрируется на рисунке 16.37.

Контролируемая электропроводящая жидкость течет в трубопроводе 2 из изоляционного материала, помещенном между полюсами 1 магнитопровода, создающего постоянное или переменное магнитное поле. В трубопроводе размещены электроды 3, с которых снимается разность потенциалов, пропорциональная расходу. Чаще всего используют переменное магнитное поле, создаваемое электромагнитом, так как при этом на результат измерения не влияет поляризация электродов. Трубопровод может иметь не только прямоугольное, но и круглое сечение.

Индукционные расходомеры имеют ряд существенных достоинств. Они практически безынерционны и могут применяться для измерения переменного (например, пульсирующего) расхода. Их выходная величина слабо зависит от таких параметров жидкости, как давление, плотность, вязкость, температура. Создаваемое ими дополнительное сопротивление потоку жидкости также незначительно. Погрешность индукционных преобразователей лежит в пределах 0,5-1,5 %; диаметр трубопроводов, в которых может измеряться расход, изменяется от единиц миллиметров до 3 м.

Основным недостатком индукционных расходомеров является практическая невозможность их использования для измерения расхода диэлектрических жидкостей. Удельное сопротивление контролируемой жидкости не должно превышать 105 Омּм.

Рисунок 16.37 - Индукционный преобразователь расхода

Ультразвуковые преобразователи расхода. Действие ультразвуковых преобразователей расхода основано на том, что скорость распространения звуковой волны в движущейся среде равна геометрической сумме скорости звука С в неподвижной среде и скорости среды V. Если измерить суммарную скорость, то при известном значении С и известном угле между векторами можно определить скорость потока V, а следовательно, и расход жидкости.

Измерение скорости звука в движущейся среде обычно осуществляется путем определения интервала времени 1, в течение которого звуковая волна проходит известное расстояние L. Наибольшее распространение на практике получили время - импульсный и фазовый методы измерений.

При время - импульсном методе измерения сигнал в виде ультразвукового импульса излучается излучателем Изл и принимается приемником Прм (рисунок 16.38). Интервал времени между моментами приема и излучения сигнала находится по формуле (16.40)

t = L/(С+V cos θ) L (1-V cos θ /C)/C ,

(16.40)

где θ - угол между векторами С и V.

Отсюда при известных значениях L, θ и С находят скорость V. Применяют дифференциальные схемы с двумя каналами прохождения

ультразвука. Движение потока жидкости увеличивает скорость ультразвука в одном канале и соответственно уменьшает в другом. Разность времени прохождения в двух каналах находят по формуле (16.41)

∆t=2LVcos θ /C2,

(16.41)

При фазовом методе измерения излучаются непрерывные гармонические колебания и измеряется разность фаз сигналов. В одноканальной структуре выходной величиной является разность фаз принятого и излученного сигналов

ϕ = ωt = ωL /(C +V cosθ) ωL(1 V cosθ / C)/ C , (16.42)

Рисунок 16.38 - Ультразвуковые преобразователи расхода

В двухканальной структуре (рисунок 16.38) оба излучателя питаются от одного генератора, а выходной величиной является разность фаз сигналов на выходах приемников, которая вычисляется по формуле (16.43)

ϕ = ωt = 2ωLV cosθ / C 2

(16.43)

Трудность практической реализации описанных методов заключается в том, что скорость реальных потоков гораздо меньше скорости звука (С~1500 м/с). В связи с этим измеряемые интервалы времени или фазовые сдвиги оказываются весьма малыми. Для повышения точности ультразвуковых преобразователей расхода в них используют весьма высокие частоты сигналов (единицы мегагерц), а также более сложные структуры преобразователей, позволяющие, в частности, исключить влияние нестабильности скорости С на результат измерения расхода.

Преобразователи расхода других типов. Кроме рассмотренных выше, находят применение и другие типы преобразователей расхода. Так, объемный расход среды может быть определен путем измерения скорости движения какой-либо метки, переносимой средой. В качестве метки используют, например, порцию нагретой жидкости или ионизированного газа. С помощью соответствующих чувствительных элементов определяют время прохождения меткой известного расстояния. Иногда осуществляют непрерывную модуляцию какого-либо параметра среды (например, степени ионизации), тогда выходной величиной является сдвиг фаз между принятым и возбуждающим сигналами.

Для измерения скоростей газовых потоков используются преобразователи на основе терморезисторов - термоанемометры. Их работа основана на том, что установившаяся температура нагреваемого током терморезистора, помещенного в газовый поток, зависит от скорости этого потока. Выходной величиной преобразователя является сопротивление терморезистора. Для уменьшения температурной погрешности в мостовую измерительную цепь, кроме основного, включают дополнительный терморезистор, аналогичный основному, но защищенный от действия потока газа.

Для измерения расхода веществ с большим ядерным моментом (например, жидкостей, содержащих водород и фтор) применяют

преобразователи расхода с использованием явления ядерного магнитного резонанса.

Для измерения расхода газов, находят применение ионизационные преобразователи, в которых движущийся газ ионизируется с помощью тлеющего разряда или радиоактивных изотопов. При этом ионный ток между введенными в поток электродами зависит от скорости движения газа.

17 Методы испытаний и контроля и их метрологическое обеспечение

Испытанием называется экспериментальное определение количественных и (или) качественных характеристик свойств объекта испытаний как результата воздействия на него при его функционировании, а также моделировании объекта и (или) воздействий (ГОСТ 16504-81). Экспериментальное

Под условиями испытаний понимается совокупность воздействующих факторов и (или) режимов функционирования объекта при испытаниях. В нормативно-технических документах на испытания конкретных объектов определение характеристик свойств объекта при испытаниях может проводиться путем использования измерений, оценивания и контроля.

Объектом испытаний является продукция или процессы ее производства и функционирования. В зависимости от вида продукции и программы испытаний объектом может быть как единичное изделие, так и их партия. Объектом испытания может быть макет или модель изделия.

Важнейшими признаками любых испытаний являются:

-принятие на основе их результатов определенных решений по объекту испытаний, например о его состоянии, как соответствующая продукция или несоответствующая продукция требованиям НД (т.е. годности или браковка), о возможности предъявления на следующие испытания и т.д.;

-задание требуемых реальных или моделируемых условий испытаний должны быть определены нормальные условия испытаний.

Существует большое число разновидностей испытаний. Они классифицируются по различным признакам. По назначению испытания делятся на исследовательские, контрольные, сравнительные и определительные. По уровню проведения различают следующие категории испытаний: государственные, межведомственные и ведомственные. По виду этапов разработки испытуемой продукции различают предварительные и приемочные испытания. В зависимости от вида испытаний готовой продукции их подразделяют на квалификационные, приемосдаточные периодические и типовые. Квалификационные испытания подразделяются на испытания продукции, которая прошла этап конструкторской или рецептурной разработки непосредственно перед решением о постановке ее на производство

квалификационные испытания качества разработки и на испытания продукции, которая прошла этап технологической разработки, т.е. разработка технологических процессов, технологического оборудования, оснастки, инструмента, технологических линий, обучение и подготовка кадров – квалификационные испытания готовности производства к выпуску качественной продукции. Определения этих видов испытаний можно найти в ГОСТ 16504-81 «Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения».

Целью испытаний следует считать нахождение истинного значения параметра (характеристики), определенного не при тех реальных условиях, в которых он фактически может находиться в ходе испытаний, а в заданных номинальных условиях испытания. Реальные условия испытаний практически всегда отличаются от номинальных, поскольку установить параметры условий испытаний абсолютно точно невозможно. Следовательно, результат испытания всегда имеет погрешность, возникающую не только из-за погрешности определения искомой характеристики, но и из-за неточного установления номинальных условий испытания.

Результатом испытаний называется оценка характеристик свойств объекта, установления соответствия объекта заданным требованиям, данные анализа качества функционирования объекта в процессе испытаний. Результат испытаний характеризуется точностью — свойством испытаний, описывающим близость их результатов к действительным значениям характеристик объекта в определенных условиях испытаний.

Между измерением и испытанием существует большое сходство: вопервых, результаты обеих операций выражаются в виде чисел; во-вторых, погрешности и в том, и другом случае могут быть выражены как разности между результатами измерений (испытаний) и истинными значениями измеряемой величины (или определяемой характеристики при номинальных условиях эксплуатации). Однако с точки зрения метрологии между этими операциями имеется значительная разница: погрешность измерения является только одной из составляющих погрешности испытания. Поэтому можно сказать, что испытание — это общая операция, чем измерение. Измерение можно считать частным случаем испытания, при котором условия испытаний не представляют интереса. Кроме того, параметры испытаний назначаются, исходя из требований превзойти параметры образцов – аналогов, так, чтобы опытные образцы испытаний получили эксплуатационные свойства лучше международных аналогов этой же продукции, такие параметры называют номинальными – ХN .

17.1 Средства испытаний

В качестве средств испытаний можно привести машины испытания твердости металлов, машины испытания металлов на разрыв, изгиб-перегиба, копры ударной нагрузки, прессы Роквела, Виккерса, машины вибрационных нагрузок – вибростенды, аэродинамические трубы, гидродинамические бассейны, испытательные полигоны, атмосферное состояние местности в различных географических точках земного шара и т.д. В главах 15 – 16 некоторые средства измерений нами не показаны, а перенесены в главу 17, так как они лучше иллюстрируют свои свойства и с точки зрения измерений, и сточки зрения испытаний и контроля.

Далее приводятся рисунки и описание различных средств измерений при испытаниях и в составе стендовых испытаний.

17.1.1 Ареометры. Классификация ареометров /32/

Различают ареометры постоянного объема и ареометры постоянной массы. Ареометр постоянного объема погружается в жидкость всегда на одну и ту же глубину, в то время как глубина погружения ареометра постоянной массы различна в зависимости от плотности испытуемой жидкости.

Ареометр постоянного объема состоит из полого продолговатого металлического или стеклянного корпуса цилиндрической формы, переходящего вверху в тонкий стержень, на конце которого имеется тарелка (чашка) для закладывания гирь. Для устойчивости корпус снабжен балластом. На стержне нанесена метка, до которой должен погружаться ареометр при определенной плотности жидкости и определенной массе гирь. О плотности исследуемой жидкости судят по массе гирь, снятых или добавленных для того, чтобы ареометр погрузился в данную жидкость до метки.

Ареометры постоянной массы по своему назначению делятся на две группы:

1)для измерения плотности жидкостей (называются денсиметрам и шкалы денсиметров градуированы в единицах плотности);

2)для измерения концентрации растворов; шкалы этих ареометров градуированы в процентах по объему или массе.

Денсиметры подразделяются на:

а) денсиметры общего назначения, служащие для измерения плотности различных жидкостей легче и тяжелее воды (водные растворы кислот, солей, щелочей и др.);

б) нефтеденсиметры (для измерения плотности нефтепродуктов); в) лактоденсиметры (для измерения плотности молока и сыворотки); г) денсиметры для морской воды; д) урометры (для измерения плотности мочи);

е) аккумуляторные денсиметры (для измерения плотности раствора электролита в аккумуляторах);

ж) денсиметры АК (для жидкостей типа кислот).

К ареометрам для измерения концентрации растворов относятся:

а) спиртомеры - для измерения крепости (концентрации) водноспиртовых растворов, определяемой процентным (по объему) содержанием безводного спирта в растворе;

б) сахаромеры - для определения процентного (по массе) содержания сухих веществ в сахарных растворах;

в) клеемеры - для определения концентрации клеевых растворов, выраженной процентным (по массе) содержанием костного клея в воде;

г) гидрометры - для определения процентного (по объему) содержания этиленгликоля в его водном растворе.

Ареометры постоянной массы бывают стеклянные и металлические. В большинстве случаев применяются стеклянные ареометры, обеспечивающие более высокую точность измерений, так как стекло обладает наилучшей смачиваемостью жидкостями, однако в ряде случаев незаменимыми

оказываются металлические приборы. Так, для измерения плотности жидких металлов при высокой температуре используют металлические ареометры, изготовленные из стали с эмалевым покрытием или из вольфрамового сплава.

Ареометры постоянной массы по их метрологическому назначению (т. е. по назначению в схеме передачи размера единицы плотности) делятся па эталонные, образцовые и рабочие.

В различных отраслях промышленности и народного хозяйства непосредственно для измерения плотности жидкостей или концентрации растворов применяют рабочие ареометры. Образцовые ареометры служат для поверки рабочих ареометров, а эталонные - для поверки образцовых ареометров.

Устройство стеклянных ареометров

Ареометр представляет собой симметричное относительно продольной оси удлиненное тело, состоящее из полого корпуса цилиндрической (рисунок 17.1 а) или веретенообразной (рисунок 17.1 б) формы и припаянного к нему в верхней части стержня. Стержень выполнен в виде тонкостенной цилиндрической трубки круглого сечения с запаянным концом. У образцовых ареометров и у спиртомеров с ценой деления шкалы 0,1 % допускается конусности стержня не более 0,0005, у остальных спиртомеров, лактоденсиметров и сахаромеров - не более 0,001.

Нижняя часть, ареометра заполнена балластом, который неподвижно закреплен при помощи связующего вещества (смолки, сургуча), размягчающегося при температуре не ниже 70 °С (у клеемеров - не ниже 87 °С). Балласт предназначен для понижения центра тяжести ареометра, чтобы последний при погружении в жидкость плавал в строго вертикальном положении и находился при этом в устойчивом равновесии. Балластом служит мелкая дробь, металлическая высечка или ртуть, которые должны быть сухими

ичистыми. Существуют также ареометры с обособленной балластной камерой, которая соединена с нижней частью корпуса.

Квнутренней поверхности стержня ареометра прочно приклеена прозрачным клеем плотная бумажная полоска белого цвета, на которой нанесена шкала, соответствующая назначению ареометра.

Цена деления шкалы устанавливается числовыми значениями

следующего ряда:

а) у денсиметров - 0,0001; 0,0002; 0,0005; 0,002; 0,005; 0,01 и 0,02 г/см3

(или единиц относительной плотности); б) у ареометров для измерения концентрации - 0,1; 0,2; 0,5 и 1 %.

Ширина штрихов шкалы не превышает 0,2 мм (у образцовых ареометров

иу спиртомеров с ценой деления шкалы 0,1 % - не более 0,1 мм). Длина основных штрихов (т. е. штрихов, обозначенных цифрами) составляет не менее 1/4 длины окружности в поперечном сечении стержня, длина наименьших штрихов - не менее 1/8 длины окружности (для образцовых ареометров — соответственно 1/2 и 1/4 длины окружности).

Расстояние между соседними штрихами, как правило, не менее 0,75 мм. У денсиметров для морской воды, аккумуляторных денсиметров, урометров, спиртомеров, клеемеров и гидрометров это расстояние составляет не менее 1 мм, у сахаромеров — не менее 1,2 мм, у лактоденсиметров - не менее 1,5 мм, у денсиметров для определения плотности малых количеств жидкости - не менее

0,5 мм.

Рисунок 17.1 - Денсиметры общего назначения типа II (а) и типа III (б)

Некоторые типы рабочих ареометров (нефтеденсиметры, лактоденсиметры, сахаромеры, клеемеры, спиртомеры, гидрометры) изготовляют со встроенным термометром, позволяющим одновременно с