Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по физика, не все.docx
Скачиваний:
45
Добавлен:
19.05.2015
Размер:
169.77 Кб
Скачать

Вопрос

  1. Механика, кинематика, динамика (определение, область задач).

Ответ

Механика — наука об общих законах движения тел.

Окружающие нас тела движутся сравнительно медленно. Поэтому их движения подчиняются законам Ньютона. Таким образом, область применения классической механики очень обширна. И в этой области человечество всегда будет пользоваться для описания любого движения тела законами Ньютона.

Кинематика — это раздел механики, изучающий способы описания движений и связь между величинами, характеризующими эти движения.

Описать движение тела — это значит указать способ определения его положения в пространстве в любой момент времени.

Вопрос

  1. Механическое движение, тело отсчета, система отсчета, способы указания положения материальной точки на координатной плоскости, понятие кинематическое уравнение материальной точки.

Ответ

Механическим движением называется перемещение тел или частей тел в пространстве относительно друг друга с течением времени.

Тело, относительно которого рассматривается движение, называется телом отсчета.

Совокупность тела отсчета, связанной с ним системы координат и часов называют системой отсчета.

Математически движение тела (или материальной точки) по отношению к выбранной системе отсчёта описывается уравнениями, которые устанавливают, как изменяются с течением времени t координаты, определяющие положение тела (точки) в этой системе отсчёта. Эти уравнения называются уравнениями движения. Например, в декартовых координатах х, y, z движение точки определяется уравнениями , , .

Способы указания положения материальной точки на координатной плоскости

Задание положения точки с помощью координат. Из курса математики вы знаете, что положение точки на плоскости можно задать с помощью двух чисел, которые называются координатами этой точки. Для этого, как известно, можно на плоскости провести две пересекающиеся взаимно перпендикулярные оси, например оси ОХ и OY. Точку пересечения осей называют началом координат, а сами оси — координатными осями.

Координаты точки М1 (рис. 1.2) равны Xj = 2, ух — 4; координаты точки М2 равны х2 = -2,5, у2 = -3,5.

Положение точки М в пространстве относительно тела отсчета можно задать с помощью трех координат. Чтобы это сделать, необходимо через выбранную точку тела отсчета провести три взаимно перпендикулярные оси ОХ, OY, OZ. В полученной системе координат положение точки будет определяться тремя координатами х, у, z.

Если число х положительно, то отрезок откладывается в положительном направлении оси ОХ (рис. 1.3) (х — О А). Если же число х отрицательно, то отрезок откладывается в отрицательном направлении оси ОХ. Из конца этого отрезка проводят прямую, параллельную оси OY, и на этой прямой откладывают отрезок от оси ОХ, соответствующий числу у (у = АВ) — в положительном направлении оси OY, если М число у положительно, и в отрицательном направлении оси OY, если число у отрицательно.

Далее из точки В другого от-У резка проводят прямую, параллельную оси OZ. На этой прямой от координатной плоскости XOY откладывают отрезок, соответствующий числу 2. Направление, рис. 1.4 в котором откладывают этот отрезок, определяют так же, как и в предыдущих случаях.

Конец третьего отрезка и есть та точка, положение которой задается координатами х, у, z.

Чтобы определить координаты данной точки, необходимо провести в обратной последовательности те операции, которые мы осуществляли, находя положение этой точки по ее координатам.

Задание положения точки с помощью радиус-вектора. Положение точки можно задать не только с помощью координат, но и с помощью радиус-вектора. Радиус-вектор — это направленный отрезок, проведенный из начала координат в данную точку. _

Радиус-вектор принято обозначать буквой г. Длина ра-диус-вектора, или, что одно и то же, его модуль (рис. 1.4), есть расстояние от начала координат до точки М.

Положение точки будет определено с помощью радиус-вектора только в том случае, если известны его модуль (длина) и направление в пространстве. Лишь при этом условии мы будем знать, в каком направлении от начала координат следует отложить отрезок длиной г, чтобы определить положение точки.

Итак, положение точки в пространстве определяется ее координатами или ее радиус-вектором.

Модуль и направление любого вектора находят по его проекциям на оси координат. Чтобы понять, как это делается, вначале необходимо ответить на вопрос: что понимают под проекцией вектора на ось?

Изобразим какую-либо ось (рис. 1.5), например ось ОХ.

Опустим из начала А и конца В вектора а перпендикуляры на ось ОХ.

Точки Aj и Вj есть проекции, соответственно, начала и конца вектора а на эту ось.

Проекцией вектора а на какую-либо ось называется длина отрезка А1В1 между проекциями начала и конца вектора на эту ось, взятая со знаком «+» или «-».

Проекцию вектора мы будем обозначать той же буквой, что и вектор, но, во-первых, без стрелки над ней и, во-вторых, с индексом внизу, указывающим, на какую ось проецируется вектор. Так, ах и ау — проекции вектора а на оси координат ОХ и OY.

Согласно определению проекции вектора на ось можно записать: ах = ± I AjEJ.

Проекция вектора на ось представляет собой алгебраическую величину. Она выражается в тех же единицах, что и модуль вектора.

Условимся считать проекцию вектора на ось положительной, если от проекции начала вектора к проекции его конца надо идти в положительном направлении оси проекций. В противном случае (см. рис. 1.5) она считается отрицательной.

Из рисунков 1.5 и 1.6 нетрудно увидеть, что проекция . вектора на ось будет положительной, когда вектор составляет острый угол с направлением оси проекций, и отрицательной, когда вектор составляет с направлением оси проекций тупой угол.

Положение точки в пространстве можно задавать с помощью координат или радиус-вектора, соединяющего начало координат и точку.

СПОСОБЫ ОПИСАНИЯ ДВИЖЕНИЯ. СИСТЕМА ОТСЧЕТА

Если тело можно считать точкой, то для описания его движения нужно научиться рассчитывать положение точки в любой момент времени относительно выбранного тела отсчета.

Существует несколько способов описания, или, что одно и то же, задания, движения точки. Рассмотрим два из них, которые наиболее часто применяются.

Координатный способ. Будем задавать положение точки с помощью координат (рис. 1.7). Если точка движется, то ее координаты изменяются с течением времени.

Так как координаты точки зависят от времени, то можно сказать, что они являются функциями времени. Математически это принято записывать в виде

(1.1)

Уравнения (1.1) называют кинематическими уравнениями движения точки, записанными в координатной форме. Если они известны, то для каждого момента времени мы сможем рассчитать координаты точки, а следовательно, и ее положение относительно выбранного тела отсчета. Вид уравнений (1.1) для каждого конкретного движения будет вполне определенным.

Линия, по которой движется точка в пространстве, называется траекторией.

В зависимости от формы траектории все движения точки делятся на прямолинейные и криволинейные. Если траекторией является прямая линия, движение точки называется прямолинейным, а если кривая — криволинейным.

Векторный способ. Положение точки можно задать, как известно, и с помощью радиус-вектора. При движении материальной точки радиус-вектор, определяющий ее положение, с течением времени изменяется (поворачивается и меняет длину; рис. 1.8), т. е. является функцией времени:

r=r(t). (1.2)

Последнее уравнение есть закон движения точки, записанный в векторной форме. Если он известен, то мы можем для любого момента времени рассчитать радиус-вектор точки, а значит, определить ее положение. Таким образом, задание трех скалярных уравнений (1.1) равносильно заданию одного векторного уравнения (1.2).

Кинематические уравнения движения, записанные в координатной или векторной форме, позволяют определить положение точки в любой момент времени.

Вопрос