Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
56
Добавлен:
20.05.2015
Размер:
486.91 Кб
Скачать

Тема 4. Организация памяти ЭВМ

Лекция 10. Общая характеристика видов памяти.

1. Стековая, ассоциативная и кэш память

2. Внешняя память

1. Стековая, ассоциативная и кэш память

Стековая память обеспечивает такой режим работы, когда информация записывается и считывается по принципу «последним записан – первым считан» (LIFO – Last In First Out). Память с подобной организацией широко применяется для запоминания и восстановления содержимого регистров процессора (контекста) при обработке подпрограмм и прерываний. Работу стековой памяти поясняет рис. 1

Рис. 1. Принцип организации стековой памяти

Ассоциативная память

В рассмотренных ранее видах запоминающих устройств доступ к информации требовал указания адреса ячейки. Зачастую значительно удобнее искать информацию не по адресу, а опираясь на какой-нибудь характерный признак, содержащийся в самой информации. Такой принцип лежит в основе ЗУ, известного как ассоциативное запоминающее устройство (АЗУ).

Ассоциативное ЗУ – это устройство, способное хранить информацию, сравнивать ее с некоторым заданным образцом и указывать на их соответствие или несоответствие друг другу. Признак, по которому производится поиск информации, называется ассоциативным признаком, а кодовая комбинация, выступающая в роли образца для поиска, – признаком поиска. Ассоциативный признак может быть частью искомой информации или дополнительно придаваться ей. В последнем случае его принято называть тегом или ярлыком.

Один из вариантов построения ассоциативной памяти показан на рис. 2.

АЗУ включает в себя:

запоминающий массив для хранения N m-разрядных слов, в каждом из которых несколько младших разрядов занимает служебная информация;

регистр ассоциативного признака, куда помещается код искомой информации (признак поиска). Разрядность регистра k обычно меньше длины слова т

схемы совпадения, используемые для параллельного сравнения каждого бита всех хранимых слов с соответствующим битом признака поиска и выработки сигналов совпадения;

регистр совпадений, где каждой ячейке запоминающего массива соответствует один разряд, в который заносится единица, если все разряды соответствующей ячейки совпали с одноименными разрядами признака поиска; регистр маски, позволяющий запретить сравнение определенных битов; комбинационную схему, которая на основании анализа содержимого регистра совпадений формирует сигналы, характеризующие результаты поиска информации.

Рис. 2. Организация ассоциативной памяти

При обращении к АЗУ сначала в регистре маски обнуляются разряды, которые не должны учитываться при поиске информации. Все разряды регистра совпадений устанавливаются в единичное состояние. После этого в регистр ассоциативного признака заносится код искомой информации (признак поиска) и начинается ее поиск, в процессе которого схемы совпадения одновременно сравнивают первый бит всех ячеек запоминающего массива с первым битом признака поиска. Те схемы, которые зафиксировали несовпадение, формируют сигнал, переводящий соответствующий бит регистра совпадений в нулевое состояние. Так же происходит процесс поиска и для остальных незамаскированных битов признака поиска. В итоге единицы сохраняются лишь в тех разрядах регистра совпадений, которые соответствуют ячейкам, где находится искомая информация. Конфигурация единиц в регистре совпадений используется в качестве адресов, по которым производится считывание из запоминающего массива.

Из-за того, что результаты поиска могут оказаться неоднозначными, содержимое регистра совпадений подается на комбинационную схему, где формируются сигналы, извещающие о том, что искомая информация:

а0 – не найдена;

а1 – содержится в одной ячейке;

а2 — содержится более чем в одной ячейке.

Формирование содержимого регистра совпадений и сигналов а0, а1, а2 носит название операции контроля ассоциации. Она является составной частью операций считывания и записи, хотя может иметь и самостоятельное значение.

При считывании сначала производится контроль ассоциации по аргументу поиска. Затем, при а0 = 1 считывание отменяется из-за отсутствия искомой информации, при а1 = 1 считывается слово, на которое указывает единица в регистре совпадений, а при а2 = 1 сбрасывается самая старшая единица в регистре совпадений и извлекается соответствующее ей слово. Повторяя эту операцию, можно последовательно считать все слова.

Запись в АП производится без указания конкретного адреса, в первую свободную ячейку. Для отыскания свободной ячейки выполняется операция считывания, в которой не замаскированы только служебные разряды, показывающие, как давно производилось обращение к данной ячейке, и свободной считается либо пустая ячейка, либо та, которая дольше всего не использовалась.

Главное преимущество ассоциативных ЗУ определяется тем, что время поиска информации зависит только от числа разрядов в признаке поиска и скорости опроса разрядов и не зависит от числа ячеек в запоминающем массиве.

Кэш-память

М. Уилксом в 1965 году было предложено использование двухуровневой быстродействующая буферная памяти между ОП и процессором. В процессе работы такой системы в буферную память копируются те участки ОП, к которым производится обращение со стороны процессора. В общепринятой терминологии – производится отображение участков ОП на буферную память. Выигрыш достигается за счет свойства локальности – если отобразить участок ОП в более быстродействующую буферную память и переадресовать на нее все обращения в пределах скопированного участка, то можно добиться существенного повышения производительности ВМ.

Уилкс называл рассматриваемую буферную память подчиненной. Позже распространение получил термин кэш-память (от английского слова cache – убежище, тайник), поскольку такая память обычно скрыта от программиста в том смысле, что он не может ее адресовать и может даже вообще не знать о ее существовании. Впервые кэш-системы появились в машинах модели 85 семейства IBM 360.

Когда ЦП пытается прочитать слово из основной памяти, сначала осуществляется поиск копии этого слова в кэше. Если такая копия существует, обращение к ОП не производится, а в ЦП передается слово, извлеченное из кэш-памяти. Данную ситуацию принято называть успешным обращением или попаданием (hit). При отсутствии слова в кэше, то есть при неуспешном обращении – промахе (miss), – требуемое слово передается в ЦП из основной памяти, но одновременно из ОП в кэш-память пересылается блок данных, содержащий это слово.

На рис. 3 приведена структура системы с основной и кэш-памятью.

Рис. 3. Принцип взаимодействия основной и кэш памяти

ОП состоит из 2n адресуемых слов, где каждое слово имеет уникальный n-разрядный адрес. При взаимодействии с кэшем эта память рассматривается как М блоков фиксированной длины по К слов в каждом (М = 2n ). Кэш-память состоит из С блоков аналогичного размера (блоки в кэш-памяти принято называть строками), причем их число значительно меньше числа блоков в основной памяти (С << М). При считывании слова из какого-либо блока ОП этот блок копируется в одну из строк кэша. Поскольку число блоков ОП больше числа строк, отдельная строка не может быть выделена постоянно одному и тому же блоку ОП. По этой причине каждой строке кэш-памяти соответствует тег (признак), содержащий сведения о том, копия какого блока ОП в данный момент хранится в данной строке. В качестве тега обычно используется часть адреса ОП.

На эффективность применения кэш-памяти в иерархической системе памяти влияет целый ряд моментов. К наиболее существенным из них можно отнести:

емкость кэш-памяти (при малом размере кэша-памяти в нее записываются маленькие порции данных и увеличивается число контекстных переключений процессора, а при большом объеме – увеличивается время на поиск области данных);

размер строки (обычно выбирается равным ширине шины, связывающей кэш-память с основной памятью);

способ отображения основной памяти на кэш- память (сущность отображения блока основной памяти на кэш-память состоит в копировании этого блока в какую-то строку кэш-памяти, после чего все обращения к блоку в ОП должны переадресовываться на соответствующую строку кэш-памяти. Удачным может быть признан лишь такой способ отображения, который одновременно отвечает трем требованиям: обеспечивает быструю проверку кэш-памяти на наличие в ней копии блока основной памяти; обеспечивает быстрое преобразование адреса блока ОП в адрес строки кэша; реализует достижение первых двух требований наиболее экономными средствами. Известные варианты отображения основной памяти на кэш можно свести к трем видам (рис. 4-6): прямому, полностью ассоциативному и частично-ассоциативному, причем последний имеет две модификации – множественно-ассоциативное отображение и отображение секторов).

Рис. 4. Организация кэш-памяти с прямым отображением

Рис. 5. Кэш-память с ассоциативным отображением

Рис. 6. Кэш-память с множественно-ассоциативным отображением

Алгоритм замещения информации в заполненной кэш-памяти (основная цель стратегии замещения – удерживать в кэш-памяти строки, к которым наиболее вероятны обращения в ближайшем будущем, и заменять строки доступ к которым произойдет в более отдаленном времени или вообще не случится. Очевидно, что оптимальным будет алгоритм, который замещает ту строку, обращение к которой в будущем произойдет позже, чем к любой другой строке кэша. Однако такое предсказание практически нереализуемо. Вне зависимости от используемого алгоритма замещения для достижения высокой скорости он должен быть реализован аппаратными средствами);

алгоритм согласования содержимого основной и кэш-памяти (в процессе вычислений ЦП может не только считывать имеющуюся информацию, но и записывать новую, обновляя тем самым содержимое кэш-памяти. С другой стороны, многие устройства ввода/вывода умеют напрямую обмениваться информацией с основной памятью. В обоих вариантах возникает ситуация, когда содержимое строки кэша и соответствующего блока ОП перестает совпадать. В результате на связанное с основной памятью устройство вывода может быть выдана «устаревшая» информация, поскольку все изменения в ней, сделанные процессором, фиксируются только в кэш-памяти, а процессор будет использовать старое содержимое кэш-памяти вместо новых данных, загруженных в ОП из устройства ввода);

число уровней кэш-памяти (L1, L2, L3, дисковыйкэш).

2. Внешняя память

Важным звеном в иерархии запоминающих устройств является внешняя, или вторичная память, реализуемая на базе различных ЗУ. Наиболее распространенные виды таких ЗУ – это магнитные и оптические диски и магнитоленточные устройства.

Магнитные диски

Информация в ЗУ на магнитных дисках (МД) хранится на плоских металлических или пластиковых пластинах (дисках), покрытых магнитным материалом. Данные записываются и считываются с диска с помощью электромагнитной катушки, называемой головкой считывания/записи, которая в процессе считывания и записи неподвижна, в то время как диск вращается относительно нее. При записи на головку подаются электрические импульсы, намагничивающие участок поверхности под ней, причем характер намагниченности поверхности различен в зависимости от направления тока в катушке. Считывание базируется на электрическом токе наводимом в катушке головки, под воздействием перемещающегося относительно нее магнитного поля. Когда под головкой проходит участок поверхности диска в катушке наводится ток той же полярности, что использовался для записи информации.

Организация данных и форматирование

Данные на диске организованы в виде набора концентрических окружностей, называемых дорожками (рис. 7).

Каждая из них имеет ту же ширину, что и головка Соседние дорожки разделены промежутками. Это предотвращает ошибки из-за смещения головки или из-за интерференции магнитных полей. Как правило, для упрощения электроники принимается, что на всех дорожках может храниться одинаковое количество информации. Таким образом, плотность записи увеличивается от внешних дорожек к внутренним.

Обмен информацией с МД осуществляется блоками. Размер блока обычно меньше емкости дорожки, и данные на дорожке хранятся в виде последовательных областей – секторов, разделенных между собой промежутками. Размер сектора равен минимальному размеру блока.

Рис. 7. Порядок размещения информации на диске

Типовое число секторов на дорожке колеблется от 10 до 100. При такой организации должны быть заданы точка отсчета секторов и способ определения начала и конца каждого сектора. Все это обеспечивается с помощью форматирования, в ходе которого на диск заносится служебная информация, недоступная пользователю и используемая только аппаратурой дискового ЗУ.

Пример разметки М Д показан на рис. 8.

Рис. 8. Формат дорожки магнитного диска (Seagate ST506)

Здесь каждая дорожка включает в себя 30 секторов по 600 байт в каждом. Сектор хранит 512 байт данных и управляющую информацию, нужную для контроллера диска. Поле заголовка содержит информацию, служащую для идентификации сектора. Байт синхронизации представляет собой характерную двоичную комбинацию, позволяющую определить начало поля. Номер дорожки определяет дорожку на поверхности. Если в накопителе используется несколько дисков, то номер головки определяет нужную поверхность. Поле заголовка и поле данных содержат также код циклического контроля, позволяющий обнаружить ошибки. Обычно этот код формируется последовательным сложением по модулю 2 всех байтов, хранящихся в поле.

Оптическая память

В 1983 году была представлена первая цифровая аудиосистема на базе компакт-дисков (CD – compact disk). Компакт-диск – это односторонний диск, способный хранить более чем 60-минутную аудиоинформацию. Громадный коммерческий успех CD способствовал развитию технологии дешевых оптических запоминающих устройств для ВМ. За последующие годы были созданы различные системы памяти на оптических дисках, три из которых в прогрессирующей степени приживаются в вычислительных машинах: CD-ROM, WARM и стираемые оптические диски.

CD-ROM

Для аудио компакт-дисков и CD-ROM используется идентичная технология. Основное отличие состоит в том, что проигрыватели CD-ROM более прочные и содержат устройства для исправления ошибок, обеспечивающие корректность передачи данных с диска в ВМ. Диск изготавливается из пластмассы, например поликарбоната, и покрыт окрашенным слоем с высокой отражающей способностью, обычно алюминием. Цифровая информация заносится в виде микроскопических углублений в отражающей поверхности. Запись информации производится с помощью сильно сфокусированного луча лазера высокой интенсивности. Так создается так называемый мастер-диск, с которого затем печатаются копии. Углубления на копии защищаются от пыли и повреждений путем покрытия поверхности писка прозрачным лаком.

Информация с диска считывается маломощным лазером, расположенным в проигрывателе. Лазер освещает поверхность вращающегося диска сквозь прозрачное покрытие. Интенсивность отраженного луча лазера меняется, когда он попадает в углубление на диске. Эти изменения фиксируются фотодетектором и преобразуются в цифровой сигнал.

Углубления, расположенные ближе к центру диска, перемещаются относительно луча лазера медленнее, чем более удаленные. Из-за этого необходимы меры для компенсации различий в скорости так, чтобы лазер мог считывать информацию с постоянной скоростью.

Одно из возможных решений аналогично применяемому в магнитных дисках – увеличение расстояния между битами информации, в зависимости от ее расположения на диске. В этом случае диск может вращаться с неизменной скоростью и, соответственно, такие дисковые ЗУ известны как устройства с постоянной угловой скоростью (CAV, Constant Angular Velocity). Ввиду нерационального использования внешней части диска метод постоянной угловой скорости в CD-ROM не поддерживается. Вместо этого информация по диску размещается в секторах одинакового размера, которые сканируются с постоянной скоростью за счет того, что диск вращается с переменной скоростью. В результате углубления считываются лазером с постоянной линейной скоростью (CLV, Constant Linear Velocity). При доступе к информации у внешнего края диска скорость вращения меньше и возрастает при приближении к оси. Емкость дорожки и задержки вращения возрастают по мере смещения от центра к внешнему краю диска.

Данные на CD-ROM организованы как последовательность блоков. Типичный формат блока показан на рис. 9.

Рис. 9. Организация данных на CD-ROM

Блок включает в себя следующие поля:

  • синхронизация. Это поле идентифицирует начало блока и состоит из нулевого байта, десяти байтов, содержащих только единичные разряды, и вновь байта из всех нулей;

  • идентификатор. Заголовок, содержащий адрес блока и байт режима. Режим 0 определяет пустое поле данных; режим 1 отвечает за использование кода, корректирующего ошибки, и наличие 2048 байт данных; режим 2 определяет наличие 2336 байт данных и отсутствие корректирующего кода;

  • данные пользователя;

  • корректирующий код (КК). Поле предназначено для хранения дополнительных данных пользователя в режиме 2, а в режиме 1 содержит 288 байт кода с исправлением ошибок.

DVD-диски (Digital Video Data) состоят из двух слоев толщиной 0,6 мм, то есть имеют две рабочих поверхности, и обеспечивают хранение по 4,7 Гбайт на каждой. В DVD-технологии используется лазер с меньшей длиной волны (650 нм против 780 нм для стандартных CD-ROM), а также более изощренная схема коррекции. Все это позволяет увеличить число дорожек и повысить плотность записи. Кроме того, при записи применяется метод сжатия информации, известный как MPEG2.

WORM

Технология дисков WORM – дисков с однократной записью и многократным считыванием, была разработана для мелкосерийного производства оптических дисков. Такие диски предполагают ввод информации лучом относительно мощного лазера. При этом пользователь с помощью несколько более дорогого, чем CD-ROM, устройства может единожды записать информацию, а затем многократно ее считывать. Для обеспечения более быстрого доступа в устройстве поддерживается метод постоянной угловой скорости при относительном снижении емкости.

Типовая техника подготовки такого диска предполагает мощный лазер для создания на поверхности диска последовательности пузырьков. Для записи информации предварительно отформатированный пузырьками диск помещается в накопитель WORM, где имеется маломощной лазер, тепла от которого тем не менее достаточно для того, чтобы «взорвать» пузырек. В процессе операции считывания лазер в накопителе WORM освещает поверхность диска. Так как «взорванный» пузырек создает более высокий контраст, чем окружающая поверхность, его легко распознать с помощью простой электроники. Данный тип носителя привлекателен для архивного хранения документов и файлов.

EOD – оптические диски со стиранием

Среди многих рассматривавшихся технологий оптических дисков с возможностью многократной записи и перезаписи информации коммерчески приемлемой оказалась только магнитооптическая. В таких системах энергия лазерного луча используется совместно с магнитным полем. Запись и стирание информации происходят за счет реверсирования магнитных полюсов маленьких областей диска, Покрытого магнитным материалом. Лазерный луч нагревает облучаемое пятно на поверхности, и в этот момент магнитное поле может изменить ориентацию магнитных полюсов на облучаемом участке. Поскольку процесс поляризации не вызывает физических изменений на диске, ему не страшны многократные повторения. При чтении направление магнитного поля можно определить по поляризации Лазерного луча. Поляризованный свет, отраженный от определенного пятна, изменяет свой угол отражения в зависимости от характера намагниченности.

Магнитные ленты

ЗУ на базе магнитных лент используются в основном для архивирования информации. Носителем служит тонкая полистироловая лента шириной от 0,38-2,54 см и толщиной около 0,025 мм, покрытая магнитным слоем. Лента наматывается на бобины различного диаметра. Данные записываются последовательно, байт за байтом, от начала ленты до ее конца. Время доступа к информации на магнитной ленте значительно больше, чем у ранее рассмотренных видов внешней памяти.

Обычно вдоль ленты располагается 9 дорожек, что позволяет записывать поперек ленты байт данных и бит паритета. Информация на ленте группируется в блоки – записи. Каждая запись отделяется от соседней межблочным промежутком дающим возможность позиционирования головки считывания/записи на начало любого блока. Идентификация записи производится по полю заголовка, содержащемуся в каждой записи. Для указания начала и конца ленты используются физические маркеры в виде металлизированных полосок, наклеиваемых на магнитную ленту, или прозрачных участков на самой ленте. Известны также варианты маркирования начала и конца ленты путем записи на нее специальных кодов-индикаторов.

В универсальных ВМ обычно применяются бобинные устройства с вакуумными системами стабилизации скорости перемещения ленты. В них скорость перемещения ленты составляет около 300 см/с, плотность записи – 4 Кбайт/см, а скорость передачи информации – 320 Кбайт/с. Типовая бобина содержит 730 м магнитной ленты.

В ЗУ на базе картриджей используются кассеты с двумя катушками, аналогичные стандартным аудиокассетам. Типовая ширина ленты – 8 мм. Наиболее распространенной формой таких ЗУ является DAT (Digital Audio Tape). Данные на ленту заносятся по диагонали, как это принято в видеокассетах. По размеру такой картридж примерно вдвое меньше, чем обычная компакт-кассета, и имеет толщину 3,81 мм. Каждый картридж позволяет хранить несколько гигабайтов данных. Время доступа к данным невелико. Скорость передачи информации выше, чем у дискет, но ниже, чем у жестких дисков.

Вторым видом ЗУ на базе картриджей является устройство стандарта DDS (Digital Data Storage). Этот стандарт был разработан в 1989 году для удовлетворения требований к резервному копированию информации с жестких дисков в мощных серверах и многопользовательских системах. В сущности, это вариант DAT, обеспечивающий хранение 2 Гбайт данных при длине ленты 90 м. В более позднем варианте стандарта DDS-DC (Digital Data Storage – Data Compression) за счет применения методов сжатия информации емкость ленты увеличена до 8 Гбайт.

Третий вид ЗУ на базе картриджей также предназначен для резервного копирования содержимого жестких дисков, но при меньших объемах такой информации. Этот тип ЗУ отвечает стандарту QIC (Quarter Inch Cartridge tape) и более известен под названием стример. Известны стримеры, обеспечивающие хранение от 15 до 525 Мбайт информации. В зависимости от информационной емкости и фирмы-изготовителя изменяются и характеристики таких картриджей. Так, число дорожек может варьироваться в диапазоне от 4 до 28, длина ленты – от 36 до 300 М и т. д.

Соседние файлы в папке УМК_Орг_ЭВМ