Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Нефть и газ / нефтесодержащие отходы.doc
Скачиваний:
244
Добавлен:
14.08.2013
Размер:
251.9 Кб
Скачать

4.8. Физико-химическая характеристика жидких нефтесодержащих отходов

 

 

К третьей группе относятся эмульсии, содержащие в своем составе как ионогенные, так и неионогенные органические соединения, не являющиеся эмульгаторами, но придающие эмульсии связывающие и антикоррозионные свойства (канифоль, хлорированный парафин, осерненное хлопковое масло). В качестве эмульгаторов там присутствуют калиевые мыла жирных кислот, ОП-4, нефтяной сульфонат натрия и синтомид-5.

Все масляные эмульсии, а второй группы в особенности, обладают большой устойчивостью. При обычном отстаивании сроком до 3 мес концентрация масла понижается всего на 10—20 %. Срок службы эмульсий обычно не превышает одного месяца. Их сбрасывают, если они загустели в процессе испарения влаги, а также при накоплении в них большого количества механических примесей и при порче, когда эмульсия приобретает неприятный гнилостный запах.

Ввиду большой устойчивости эмульсий сброс их на общие очистные сооружения предприятий ухудшает качество очистки стоков, поскольку высокоэмульгированные нефтепродукты не задерживаются в отстойниках и проходят через фильтры доочистки. В связи с этим отработанные эмульсии подвергают предварительной обработке путем фильтрования, продувки воздухом, методом бактерицидных добавок, например гексахлорофена с целью предотвращения загнивания. Другим путем обработки эмульсий является их разрушение. Если учесть, что в отработанной эмульсии содержится до 50 г/л минерального масла, а количество сбрасываемых эмульсий в зависимости от типа предприятия колеблется от 1 до 300 м/сут, то становится очевидным, что отработанные эмульсии представляют собой ценный вторичный продукт, подлежащий утилизации. Так, при сбросе 10 м3 эмульсий в сутки можно извлечь до 0,5 м3 минерального масла. Обследование промпредприятий Днепропетровска, проведенное в 1983 г., показало, что по далеко не полным данным там образуется свыше 12 000 т/год отработанных эмульсий, которые пока безвозвратно теряются. В связи с увеличением количества машиностроительных и металлургических заводов обработка масляных эмульсий стала важной народнохозяйственной задачей.

В настоящее время в той или иной степени применяют следующие методы разрушения эмульсий: реагентная коагуляция, центрифугирование, реагентная напорная флотация, электрокоагуляция, ультрафильтрация и обратный осмос. Применяют также комбинации этих методов.

В процессе центрифугирования под действием центробежных сил при большой частоте вращения (фактор разделения не менее 7250) происходит разрушение коллоидного раствора, и частицы, имеющие меньшую плотность (масло), отделяются от основной водной среды. Для облегчения этого процесса следует удалить гид ратную оболочку с поверхности мицелл, что делают путем добавки к эмульсии кислоты. При наличии центрифуг в кислотостойком исполнении процесс ведут в одну ступень: эмульсию подкисляют до рН = 1-2, после чего под действием центробежных сил она разрушается и полностью разделяется. С использованием обычных центрифуг процесс ведут в две стадии: эмульсию подкисляют до рН = 7 и обрабатывают в центрифуге, в результате чего удаляется до 80 % масла. Оставшуюся нефтесодержащую жидкость доочи-щают путем флотации или каким-либо другим методом.

Реагентная обработка заключается в добавлении к эмульсии сернокислого алюминия, хлорного или сернокислого железа и последующем отстаивании. Реагенты применяют в сочетании с известковым молоком или едким натрием. Дозы реагентов большие -- 7--8 г/л. Таким методом можно практически полностью разрушить эмульсию, однако при этом образуется до 20--30 % осадка, который трудно удаляется и обрабатывается. При напорной флотации эмульсии применяют те же реагенты и в таких же дозах. Преимущество метода флотации перед реагентной обработкой с последующим отстаиванием заключается в большем удобстве удаления образующегося осадка, который увлекается пузырьками воздуха и всплывает на поверхность флотатора в виде пены. Основные параметры процесса следующие: давление насыщения воздухом -- 0,4 МПа, время насыщения -- 5 мин, время уплотнения пены -- 30 мин.

Для разрушения эмульсий может использоваться также метод электрокоагуляции. Он почти не требует затрат реагентов, но потребляет значительное количество электроэнергии,

а также металлов. Небольшое количество реагентов расходуется только на установление определенного значения рН обрабатываемой эмульсии. Материальные затраты при этом методе примерно такие же, как и при методе напорной флотации, однако он требует высокой квалификации обслуживающего персонала. Метод связан также с частой заменой электродов, необходимостью их периодической очистки от зарастания гидроксидом металла и отложений масла. Часто происходят пробои электродов, в результате чего они выходят из строя. По некоторым данным,  эффективен метод использования ультрафильтрации и обратного осмоса для обработки СОЖ. Так, положительные результаты получены при разрушении СОЖ на основе эмульсолов повышенной устойчивости (типа Аквол). Для ультрафильтрации применялись мембраны УАМ различной пористости (50, 150, 200 и 300). Конструкция установки -- типа фильтр-пресса. В то же время метод обратного осмоса для эмульсола типа Аквол, испытанный на стендовой установке с ацетилцеллюлозными мембранами МГА-95, не был признан удовлетворительным из-за отсутствия эффективного способа восстановления разделяющей способности мембран.

Следует отметить, что описание параметров процессов ультрафильтрации и обратного осмоса для разделения СОЖ встречается редко. Для проведения процессов необходимо знать влияние продолжительности работы на производительность и разделяющую способность мембран, а также влияние характеристик и рабочего давления на время эксплуатации мембран, способы регенерации и очистки мембран и т.д. Фактором, сдерживающим широкое применение этого способа, является также дефицит высококачественных мембран отечественного производства.

Из анализа методов разрушения эмульсий видно, что всем им присущи определенные недостатки. Во ВНИИВОД-ГЕО была разработана рациональная схема, в которой использовано сочетание этих методов. При разработке схемы преследовались следующие цели: уменьшение дозы реагентов, снижение объема образующегося осадка, увеличение степени очистки стоков, возврат извлеченного масла и реагентов.

Согласно предложенной схеме, эмульсия накапливается в сборной емкости и подается в отстойник, куда дозируется серная кислота до величины рН = 7, после чего эмульсия отстаивается от масла и взвесей. Под действием серной кислоты в небольших дозах масло само не выделяется. Всплывает только то масло, которое выделилось в процессе работы станков или другого оборудования. Затем эмульсия поступает на центрифугирование, где она разрушается и при этом удаляется 85--90 % масла. В качестве центрифуги можно использовать саморазгружающийся центробежный сепаратор УОВ-602К-2 или отстойную центрифугу марки ОМД 802-К, выпу-

 

 

Рис. 83. Принципиальная схема установки по разрушению отработанных эмульсий

1 - отстойник; 2 - сепаратор; 3 - ресивер; 4 - флотатор: 5 - бак для растворения коагулянта; 6 - сборник шлама; 7 - сборник пены; 8 - сборник масла 9-12 - дозаторы коагулянтов; 13 - рН-метр; 14 - сжатый воздух; 15 - насос

скаемую заводом "Курганармхиммаш". Это масло может использоваться в качестве топлива или для приготовления свежих мульсолов. После этого частично очищенную эмульсию направляют на реагентную флотацию или на электрофлотацию. Образовавшаяся при этом пена подается в сборник, где уплотняется, а затем разрушается серной кислотой. Объем пены составляет 17-20 % объема обрабатываемой эмульсии. Пена представляет собой гидроксид металла (алюминия или железа, в зависимости от типа коагулянта), на частицах которого сорбировано минеральное масло -- органические кислоты, выделенные из эмульсии в процессе ее коагуляции. Пена имеет следующий состав: гидроксид алюминия —6 %, минеральные масла и органические кислоты -- 22 %, вода --12 %, воздух — 60 %. При растворении пены в серной кислоте гидроксид алюминия превращается в сернокислый алюминий по реакции

Минеральные масла и органические кислоты всплывают на поверхность, отстаиваются и направляются на регенерацию.