Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Baer M., Billing G.D. (eds.) - The role of degenerate states in chemistry (Adv.Chem.Phys. special issue, Wiley, 2002)

.pdf
Скачиваний:
17
Добавлен:
15.08.2013
Размер:
4.29 Mб
Скачать

applying direct molecular dynamics to non-adiabatic systems

423

evolution of the

expectation values

of the

nuclear

position and momentum

 

 

^

 

 

 

 

operators. For a general operator, O

 

 

 

 

 

 

 

q

^

^

 

 

 

 

 

 

qt

hOi ¼ iO; H&i

 

ðC:9Þ

^

^

^

 

 

 

 

 

 

where hOi ¼ hwjOjwi and

½O; H& is the commutator of the operator with the

Hamiltonian. Evaluating

the commutators

^

^

to the

½R; H&

and ½P; H& leads

Ehrenfest theorem

 

q

^

1

^

 

qt hRi ¼ m hPi

 

 

q

hP^i ¼

qV

 

 

qt

qR

ðC:10Þ

ðC:11Þ

The localized nature of the nuclear functions means that these reduce to classical equations of motion

_

Pi

 

 

ðC:12Þ

 

 

 

 

 

Ri ¼ m

 

¼

 

 

qV

 

 

 

 

 

 

 

 

 

 

 

 

 

P_ i ¼

qR

R Ri

ðC:13Þ

 

 

 

 

 

 

 

Solving the Eqs. (C.6–C.8,C.12,C.13) comprise what is known as the Ehrenfest dynamics method. This method has appeared under a number of names and derivations in the literature such as the classical path method, eikonal approximation, and hemiquantal dynamics. It has also been put to a number of different applications, often using an analytic PES for the electronic degrees of freedom, but splitting the nuclear degrees of freedom into quantum and classical parts.

In the derivation used here, it is clear that two approximations have been made—the configurations are incoherent, and the nuclear functions remain localized. Without these approximations, the wave function form Eq. (C.1) could be an exact solution of the Schro¨dinger equation, as it is in 2D MCTDH form (in fact is in what is termed a natural orbital form as only ‘‘diagonal’’ configurations are included [20]).

Acknowledgments

Thanks are due to Luis Blancafort, Mike Bearpark, Irene Burghardt, and Adelaida Sanchez-Galvez for reading the manuscript, and for helpful hints in the presentation of this material.

References

1.W. Domcke and G. Stock, Adv. Chem. Phys. 100, 1 (1997).

2.K. Bolton, W. Hase, and G. Peslherbe, in Modern methods for multi-dimensional dynamics computations in chemistry, D. Thompson, ed., World Scientific, Singapore, 1998, pp. 143–189.

424

g. a. worth and m. a. robb

3.D. Truhlar, in The reaction path in chemistry, D. Heidrich, ed., Kluwer Academic Publishers, Dordrecht, 1995, pp. 229–255.

4.M. Klessinger and J. Michl, Excited states and photochemistry of organic molecules, VCH New York, 1994.

5.J. Michl and Bonacic-Koutecky, Electronic aspects of organic photochemistry, John Wiley & Sons, Inc., New York, 1990.

6.F. Bernardi, M. Olivucci, and M. Robb, Chem. Soc. Rev., 25, 321 (1996).

7.M. Robb, F. Bernardi, and M. Olivucci, Pure Appl. Chem. 67, 783 (1995).

8.M. Klessinger, Angew. Chem. 107, 597 (1995).

9.E. Teller, J. Phys. Chem. 41, 109, (1937).

10.G. Herzberg and H. C. Longuet-Higgins, Discuss. Farad. Soc. 35, 77 (1963).

11.E. Teller, Isr. J. Chem. 7, 227 (1969).

12.H. Zimmerman, J. Am. Chem. Soc. 88, 1566 (1966).

13.J. Michl, Mol. Photochem. 4, 243 (1972).

14.R. Englman, The Jahn-Teller effect in molecules and crystals, John Wiley & Sons, Inc., New York, 1972.

15.R. Kosloff, J. Phys. Chem. 92, 2087 (1988).

16.G. G. Balint-Kurti, R. N. Dixon, and C. C. Marston, Int. Rev. Phys. Chem. 11, 317 (1992).

17.R. Kosloff, in Dynamics of Molecules and Chemical Reactions, R. E. Wyatt and J. Z. H. Zhang, eds., Marcel Dekker, New York, 1996, pp. 185–230.

18.N. Balakrishnan, C. Kalyanaraman, and N. Sathyamurthy, Phys. Rep. 280, 79 (1997).

19.H. -D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990).

20.M. H. Beck, A. Ja¨ckle, G. A. Worth, and H. -D. Meyer, Phys. Rep. 324, 1 (2000).

21.A. Donoso, D. Kohen, and C. Martens, J. Chem. Phys. 112, 7345 (2000).

22.E. J. Heller, J. Chem. Phys. 62, 1544 (1975).

23.E. J. Heller, J. Chem. Phys. 75, 2923 (1981).

24.S.-Y. Lee and E. Heller, J. Chem. Phys. 76, 3035 (1982).

25.M. F. Herman and E. Kluk, Chem. Phys. 91, 27 (1984).

26.S. Sawada, R. Heather, B. Jackson, and H. Methiu, J. Chem. Phys. 83, 3009 (1985).

27.R. Littlejohn, Phys. Rep. 138, 193 (1986).

28.M. F. Hermann, Ann. Rev. Phys. Chem. 45, 83 (1994).

29.M. A. Sepulveda and F. Grossmann, Adv. Chem. Phys. 96, 191 (1996).

30.J. Tully, Farad. Discuss. 110, 407 (1998).

31.J. Tully, in Modern methods for multi-dimensional dynamics computations in chemistry, D. Thompson, ed., World Scientific, Singapore, 1998, pp. 34–72.

32.M. D. Hack and D. G. Truhlar, J. Phys. Chem. A 104, 7917 (2000).

33.S. Sawada and H. Methiu, J. Chem. Phys. 84, 227 (1986).

34.I. Burghardt, H.-D. Meyer, and L. S. Cederbaum, J. Chem. Phys. 111, 2927 (1999).

35.T. J. Mart´ınez, M. Ben-Nun, and R. D. Levine, J. Phys. Chem. 100, 7884 (1996).

36.T. J. Mart´ınez, M. Ben-Nun, and R. D. Levine, J. Phys. Chem. A 101, 6389 (1997).

37.B. Roos, Adv. Chem. Phys. 87, 399 (1987).

38.J. McDouall, K. Peasley, and M. Robb, Chem. Phys. Lett. 148, 183 (1988).

39.K. Andersson, P. Malmqvist, and B. Roos, J. Chem. Phys. 96, 1218 (1992).

applying direct molecular dynamics to non-adiabatic systems 425

40.K. Andersson and B. Roos, in Modern Electronic structure theory, D. Yarkony, ed., World Scientific, Singapore, 1995, pp. 55–109.

41.B. Roos, Acc. Chem. Res. 32, 137 (1999).

42.I. Ragazos, M. Robb, F. Bernardi, and M. Olivucci, Chem. Phys. Lett. 197, 217 (1992).

43.M. Bearpark, M. Robb, and H. Schlegel, Chem. Phys. Lett. 223, 269 (1994).

44.D. Truhlar, R. Steckler, and M. Gordon, Chem. Rev. 87, 217 (1987).

45.D. Truhlar and M. Gordon, Science 249, 491 (1990).

46.D. Heidrich, ed., The reaction path in chemistry, Kluwer Academic Publishers, Dordrecht, 1995.

47.C. Gonzalez and H. Schlegel, J. Chem. Phys. 90, 2154 (1989).

48.C. Gonzalez and H. Schlegel, J. Phys. Chem. 94, 5523 (1990).

49.P. Celani, M. Robb, M. Garavelli, F. Bernardi, and M. Olivucci, Chem. Phys. Lett. 243, 1 (1995).

50.M. Garavelli, P. Celani, M. Fato, M. Bearpark, B. Smith, M. Olivucci, and M. Robb, J. Phys. Chem. 101, 2023 (1997).

51.M. Robb, M. Garavelli, M. Olivucci, and F. Bernardi, in Reviews in Computational Chemistry, K. Lipkowitz and D. Boyd, eds., Vol. 15, John Wiley & Sons, New York, 2000, pp. 87–146.

52.M. Olivucci, M. Robb, and F. Bernardi, in Conformational analysis of molecules in excited states, Wiley-VCH, New York, 2000, pp. 297–366.

53.M. Baer, Chem. Phys. Lett. 35, 112 (1975).

54.M. Baer, Chem. Phys. 259, 123 (2000).

55.D. Yarkony, J. Chem. Phys. 105, 10456 (1996).

56.Z. Xu, M. Baer, and A. Varandas, J. Chem. Phys. 112, 2746 (2000).

57.A. Mebel, A. Yahalom, R. Englman, and M. Baer, J, Chem. Phys. 115, 3673 (2001).

58.N. Allinger, Adv. Phys. Org. Chem. 13, 1 (1976).

59.C. Brooks III, M. Karplus, and B. Pettitt, Proteins: A theoretical perspective of dynamics, structure, and thermodynamics, John Wiley & Sons, Inc., New York, 1988, also Adv. Chem. Phys. LXXI.

60.J. McCammon and S. Harvey, Dynamics of proteins and nucleic acids, Cambridge University Press, Cambridge, U.K., 1987.

61.A. Warshel and R. Weiss, J. Am. Chem. Soc. 102, 6218 (1980).

62.A. Warshel, Computer modeling of chemical reactions in enzymes and solutions, John Wiley & Sons, Inc., New York, 1991.

63.F. Bernardi, M. Olivucci, and M. Robb, J. Am. Chem. Soc. 114, 1606 (1992).

64.M. Bearpark, M. Robb, F. Bernardi, and M. Olivucci, Chem. Phys. Lett. 217, 513 (1994).

65.H. Ko¨ppel, W. Domcke, and L. S. Cederbaum, Adv. Chem. Phys. 57, 59 (1984).

66.I. Wang and M. Karplus, J. Am. Chem. Soc. 95, 8160 (1973).

67.A. Warshel and M. Karplus, Chem. Phys. Lett. 32, 11 (1975).

68.C. Leforestier, J. Chem. Phys. 68, 4406 (1978).

69.R. Barnett, U. Laudman, and A. Nitzan, J. Chem. Phys. 89, 2242 (1988).

70.A. Selloni, P. Carnevali, R. Car, and M. Parinello, Phys. Rev. Lett. 59, 823 (1987).

71.E. Fois, A. Selloni, M. Parinello, and R. Car, J. Phys. Chem. 92, 3268 (1988).

72.R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

73.D. Remler and P. Madden, Mol. Phys. 70, 921 (1990).

426

g. a. worth and m. a. robb

74. D. Marx and J. Hutter, in Modern Methods and Algorithms of Quantum Chemistry,

J.Grotendorst, ed., John von Neumann Institute for Computing, Ju¨lich, Germany, 2000, pp. 301–449. See http://www.fz-juelich.de/nic-series.

75.H. Schlegel, J. Millam, S. Iyengar, G. Voth, A. Daniels, G. Scuseria, and M. Frisch, J. Chem. Phys. 114, 9758 (2001).

76.C. Molteni, I. Frank, and M. Parrinello, J. Am. Chem. Soc. 121, 12177 (1999).

77.T. Helgaker, E. Uggerud, and H. Jensen, Chem. Phys. Lett. 173, 145 (1990).

78.W. Chen, W. Hase, and H. Schlegel, Chem. Phys. Lett. 228, 446 (1994).

79.B. Smith, M. Bearpark, M. Robb, F. Bernardi, and M. Olivucci, Chem. Phys. Lett. 242, 27 (1995).

80.M. Bearpark, F. Bernardi, S. Clifford, M. Olivucci, M. Robb, B. Smith, and T. Vreven, J. Am. Chem. Soc. 118, 169 (1996).

81.M. Bearpark, F. Bernardi, M. Olivucci, M. Robb, and B. Smith, J. Am. Chem. Soc. 118, 5254 (1996).

82.M. Deumal, M. Bearpark, B. Smith, M. Olivucci, F. Bernardi, and M. Robb, J. Org. Chem. 63, 4594 (1998).

83.M. Garavelli, B. Smith, M. Bearpark, F. Bernardi, M. Olivucci, and M. Robb, J. Am. Chem. Soc. 122, 5568 (2000).

84.S. Klein, M. Bearpark, B. Smith, M. Robb, M. Olivucci, and F. Bernardi, Chem. Phys. Lett. 292, 259 (1998).

85.F. Jolibois, M. Bearpark, S. Klein, M. Olivucci, and M. Robb, J. Am. Chem. Soc. 122, 5801 (2000).

86.T. Vreven, F. Bernardi, M. Garavelli, M. Olivucci, M. Robb, and H. Schlegel, J. Am. Chem. Soc. 119, 12687 (1997).

87.A. Sanchez-Galvez, P. Hunt, M. Robb, M. Olivucci, T. Vreven, and H. Schlegel, J. Am. Chem. Soc. 122, 2911 (2000).

88.M. Ben-Nun, J. Quenneville, and T. Mart´ınez, J. Phys. Chem. A 104, 5162 (2000).

89.J. Ischtwan and M. Collins, J. Chem. Phys. 100, 8080 (1994).

90.M. Collins, Adv. Chem. Phys. 93, 389 (1996).

91.R. Bettens and M. Collins, J. Chem. Phys. 111, 816 (1999).

92.K. Thompson, M. Jordan, and M. Collins, J. Chem. Phys. 108, 8302 (1998).

93.K. Thompson, M. Jordan, and M. Collins, J. Chem. Phys. 108, 564 (1998).

94.M. Collins and D. Zhang, J. Chem. Phys. 111, 9924 (1999).

95.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,

V.G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman,

J.Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,

R.Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,

C.Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wond, J. L. Andres,

C.Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN 98, Gaussian, Inc., Pittsburgh PA, 1998.

96.M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jensen, S. Koseki, N. Matsunaga,

K.Nguyen, S. Su, T. Windus, M. Dupuis, and J. Montgomery, J. Comp. Chem. 14, 1347 (1993).

applying direct molecular dynamics to non-adiabatic systems 427

97. K. Andersson, M. Blomberg, M. Fulscher,¨

G. Karlstrom,¨

˚

R. Lindh, P.-A. Malmqvist,

P.Neogra´dy, J. Olsen, B. Roos, A. Sadlej, M. Schu¨tz, L. Seijo, L. Serrano-Andre´s, P. Siegbahn, and P.-O. Widmark, MOLCA. S, Version 4, Lund University, Sweden, 1997.

98.H. -J. Werner and P. Knowles, MOLPR. O, Version 96.3, University of Birmingham, U.K., 1996.

99.H. Dachsel, R. Shepard, J. Nieplocha, and R. Harrison, J. Comp. Chem. 18, 430 (1997).

100.J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys. 82, 1400 (1985).

101.J. C. Light, in Time-Dependent Quantum Molecular Dynamics J. Broeckhove and L. Lathouwers, eds., Plenum, New York, 1992, pp. 185–199.

102.D. Kosloff and R. Kosloff, J. Comp. Phys. 52, 35 (1983).

103.C. Cerjan, ed., Numerical Grid Methods and their Application to Schro¨dinger’s Equation, Kluwer Academic Publishers, Dordrecht, 1993.

104.R. Kosloff, Ann. Rev. Phys. Chem. 45, 145 (1994).

105.C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldenberg, A. Hammerich,

G.Jolicard, W. Karrlein, H. -D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, J. Comp. Phys. 94, 59 (1991).

106.R. E. Wyatt and C. Iung, J. Chem. Phys. 98, 6758 (1993).

107.A. Maynard, R. E. Wyatt, and C. Iung, J. Chem. Phys. 106, 9483 (1997).

108.U. Manthe, H.-D. Meyer, and L. S. Cederbaum, J. Chem. Phys. 97, 3199 (1992).

109.A. Raab, G. Worth, H. -D. Meyer, and L. S. Cederbaum, J. Chem. Phys. 110, 936 (1999).

110.G. Worth, J. Chem. Phys. 114, 1524 (2001).

111.H. Buchenau, J. P. Toennies, J. Arnold, and J. Wolfrum, Ber. Bunsenges. Phys. Chem. 94, 1231 (1990).

112.G. C. Schatz, J. Phys. Chem. 100, 12839 (1996).

113.G. Schatz and A. Kuppermann, J. Chem. Phys. 65, 4668 (1976).

114.D. Neuhauser and M. Baer, J. Chem. Phys. 91, 4651 (1989).

115.D. Neuhauser, M. Baer, and D. Kouri, J. Chem. Phys. 93, 2499 (1990).

116.A. Ja¨ckle and H.-D. Meyer, J. Chem. Phys. 109, 2614 (1998).

117.A. Untch, K. Weide, and R. Schinke, J. Chem. Phys. 95, 6496 (1991).

118.R. Schinke, M. Nonella, H. U. Suter, and J. R. Huber, J. Chem. Phys. 93, 1098 (1990).

119.C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, N.J. (1971).

120.L. Verlet, Phys. Rev. 159, 98 (1967).

121.M. Allen and D. Tildesley, Computer Simulation of Liquids, OUP, Oxford, U.K., (1987).

122.S. Gray, D. Noid, and B. Sumpter, J. Chem. Phys. 101, 4062 (1994).

123.P. Pulay, Adv. Chem. Phys. 69, 241 (1987).

124.T. Helgaker and P. J rgensen, Adv. Quant. Chem. 19, 183 (1988).

125.T. Helgaker and P. J rgensen, in Methods in computational molecular physics, S. Wilson and

G.Diercksen, eds., Plenum Press, New York, 1992, pp. 353–421.

126.R. Shepard, in Modern Electronic structure theory, D. Yarkony, ed. World Scientific, Singapore, 1995, pp. 345–458.

127.P. Pulay, in Modern Electronic Structure Theory, D. Yarkony, ed., World Scientific, Singapore, 1995, pp. 1191–1240.

128.H. Hellmann, Einfu¨hrung in die Quantenchemie, Franz Deutiche, Leipzig, 1937.

129.R. Feynman, Phys. Rev. 56, 340, (1939).

428

g. a. worth and m. a. robb

130. T. Helgaker, in The Encyclopedia of Computational Chemistry, eds. P. v. R. Schleyer,

N.L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner, eds., Vol. 2, John Wiley & Sons, Inc., Chichester, 1998, pp. 1157–1169.

131.R. Schinke, Photodissociation Dynamics, Cambridge University Press, Cambridge, UK, 1993.

132.K. C. Kulander and E. J. Heller, J. Chem. Phys. 69, 2439 (1978).

133.E. Heller, Acc. Chem. Res. 14, 368 (1981).

134.D. Noid, M. Koszykowski, and R. Marcus, J. Chem. Phys. 67, 404 (1977).

135.P. Berens and K. Wilson, J. Chem. Phys. 74, 4872 (1981).

136.G. Stock and W. Miller, J. Chem. Phys. 99, 1545 (1993).

137.E. Wigner, Phys. Rev. 40, 749 (1932).

138.E. Heller, J. Chem. Phys. 65, 1289 (1976).

139.S. Mukamel, Principles of nonlinear optical spectroscopy, Oxford University Press, Oxford,

U.K., 1995.

140.M. Hillery, R. O’Connell, M. Scully, and E. Wigner, Phys. Rep. 106, 122 (1984).

141.K. Blum, Density matrix theory and applications, Plenum Press, New York, 1981.

142.S. Chapman and Bunker, J. Chem. Phys. 62, 2890 (1975).

143.C. Sloane and W. Hase, J. Chem. Phys. 66, 1523 (1977).

144.G. Jones, B. Carpenter, and M. Paddon-Row, J. Am. Chem. Soc. 121, 11171 (1999).

145.D. Chandler, J. Chem. Phys. 68, 2959 (1978).

146.S. Hammes-Schiffer and J. Tully, J. Chem. Phys. 103, 8528 (1995).

147.A. Messiah, Quantum Mechanics, Vol. 1, John Wiley & Sons, Inc., New York, 1962.

148.R. Skodje and D. Truhlar, J. Chem. Phys. 80, 3123 (1984).

149.R. Coalson and M. Karplus, J. Chem. Phys. 93, 3919 (1990).

150.F. Hansen, N. Henriksen, and G. Billing, J. Chem. Phys. 90, 3060 (1989).

151.G. Billing, J. Chem. Phys. 107, 4286 (1997).

152.G. Billing, J. Chem. Phys. 110, 5526 (1999).

153.K. Kay, J. Chem. Phys. 100, 4377 (1994).

154.Y. Elran and K. Kay, J. Chem. Phys. 110, 3653 (1999).

155.Y. Elran and K. Kay, J. Chem. Phys. 110, 8912 (1999).

156.K. Kay, J. Chem. Phys. 100, 4432 (1994).

157.A. Walton and D. Manolopoulos, Chem. Phys. Lett. 244, 448 (1995).

158.A. Walton and D. Manolopoulos, Mol. Phys. 87, 961 (1996).

159.D. McCormack, J. Chem. Phys. 112, 992 (2000).

160.A. Baede, Adv. Chem. Phys. 30, 463 (1975).

161.W. Domcke, H. Ko¨ppel, and L. Cederbaum, Mol. Phys. 43, 851 (1981).

162.R. Whetten, G. Ezra, and E. Grant, Ann. Rev. Phys. Chem. 36, 277 (1985).

163.L. Butler, Ann. Rev. Phys. Chem. 49, 125 (1998).

164.H. Jahn and E. Teller, Proc. R. Soc. London Sec. A 161, 220 (1937).

165.I. Bersuker, The Jahn-Teller effect and vibronic interactions in modern chemistry, Plenum Press, New York, 1984.

166.T. Barckholtz and T. Miller, Int. Rev. Phys. Chem. 17, 435 (1998).

167.T. Barckholtz and T. Miller, J. Phys. Chem. A 103, 2321 (1999).

applying direct molecular dynamics to non-adiabatic systems 429

168.I. Bersuker, Chem. Rev. 101, 1067 (2001).

169.F. Brogli, E. Heilbronner, E.Kloster-Jensen, A. Schmelzer, A. S. Manocha, J. A. Pople, and L. Radom, Chem. Phys. 4, 107 (1974).

170.L. S. Cederbaum, W. Domcke, H. Ko¨ppel, and W. von Niessen, Chem. Phys. 26, 169 (1977).

171.I. Yamazaki, T. Murao, T. Yamanaka, and K. Yoshihara, Faraday Discuss. Chem. Soc. 75, 395 (1983).

172.K. K. Innes, I. G. Ross, and W. R. Moonaw, J. Mol. Spec. 132, 492 (1988).

173.C. Woywod, W. Domcke, A. L. Sobolewski, and H.-J. Werner, J. Chem. Phys. 100, 1400 (1994).

174.G. Stock, C. Woywod, W. Domcke, T. Swinney, and B. S. Hudson, J. Chem. Phys. 103, 6851 (1995).

175.B. Kohler, Chem. Rev. 93, 41 (1993).

176.D. Yarkony, Rev. Mod. Phys. 68, 985 (1996).

177.D. Yarkony, J. Phys. Chem. 100, 18612 (1996).

178.D. Yarkony, Acc. Chem. Res. 31, 511 (1998).

179.T. Pacher, L. S. Cederbaum, and H. Ko¨ppel, Adv. Chem. Phys. 84, 293 (1993).

180.W. Lichten, Phys. Rev. 164, 131 (1967).

181.F. Smith, Phys. Rev. 179, 111 (1969).

182.C. A. Mead and D. G. Truhlar, J. Chem. Phys. 77, 6090 (1982).

183.A. Macias and A. Riera, J. Phys. B 11, L489 (1978).

184.H.-J. Werner and W. Meyer, J. Chem. Phys. 74, 5802 (1981).

185.R. Cimirglia, J.-P. Malrieu, M. Persico, and F. Spiegelmann, J. Phys. B 18, 3073 (1985).

186.X. Gade´a and M. Pe´llisier, J. Chem. Phys. 93, 545 (1990).

187.W. Domcke, C. Woywood, and M. Stengle, Chem. Phys. Lett. 226, 257 (1996).

188.H. Ko¨ppel, J. Gronki, and S. Mahapatra, J. Chem. Phys. 115, 2377 (2001).

189.G. Atchity, S. Xantheas, and K. Ruendenberg, J. Chem. Phys. 95, 1862 (1991).

190.C. Cattarius, G. Worth, H.-D. Meyer, and L. Cederbaum, J. Chem. Phys. 115, 2088 (2001).

191.U. Manthe and H. Ko¨ppel, J. Chem. Phys. 93, 1658 (1990).

192.S. Mahapatra, G. Worth, H. -D. Meyer, L. Cederbaum, and H. Ko¨ppel, J. Phys. Chem. A 105, 5567 (2001).

193.S. Mahapatra, L. Cederbaum, and H. Ko¨ppel, J. Chem. Phys. 111, 10452 (1999).

194.H. Ko¨ppel, M. Doscher, and S. Mahapatra, Int. J. Quant. Chem. 80, 942 (2000).

195.G. A. Worth, H.-D. Meyer, and L. S. Cederbaum, J. Chem. Phys. 109, 3518 (1998).

196.H. S. and S. G, J. Phys. Chem. B 104, 1146 (2000).

197.G. Billing, Int. Rev. Phys. Chem. 13, 309 (1994).

198.P. Atkins, Molecular Quantum Mechanics, 2nd ed., OUP, Oxford, UK, 1983.

199.P. Kuntz, J. Chem. Phys. 95, 141 (1991).

200.A. Bjerre and E. Nikitin, Chem. Phys. Lett. 1, 179 (1967).

201.J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971).

202.N. Blais and D. Truhlar, J. Chem. Phys. 79, 1334 (1983).

203.J. C. Tully, J. Chem. Phys. 93, 106 (1990).

204.D. F. Coker, in Computer Simulation in Chemical Physics, M. P. Allen and D. J. Tildesley, eds., Kluwer Academic, Dordrecht, 1993, pp. 315–377.

205.D. Coker and L. Xiao, J. Chem. Phys. 102, 496 (1995).

430

g. a. worth and m. a. robb

206.S. Chapman, Adv. Chem. Phys. 82(pt. II), 423 (1992).

207.W. Miller and T. George, J. Chem. Phys. 56, 5637 (1972).

208.L. Landau, Phys. Z. Sow. 2, 46 (1932).

209.C. Zener, Proc. R. Soc. London, Ser. A 137, 596 (1932).

210.E. Stueckelberg, Helv. Phys. Acta 5, 369 (1932).

211.M. Topaler, T. Allison, D. Schwenke, and D. Truhlar, J. Chem. Phys. 109, 3321 (1998).

212.M. Herman, J. Chem. Phys. 81, 754 (1984).

213.M. Hack, A. Jasper, Y. Volobuev, D. Schwenke, and D. Truhlar, J. Phys. Chem. A 103, 6309 (1999).

214.G. Jones, B. Carpenter, and M. Paddon-Row, J. Am. Chem. Soc. 120, 5499 (1998).

215.Y. Volobuev, M. Hack, M. Topaler, and D. Truhlar, J. Chem. Phys. 112, 9716 (2000).

216.M. Krishna, J. Chem. Phys. 93, 3258 (1990).

217.S. Adhikari and G. Billing, J. Chem. Phys. 111, 48 (1999).

218.M. Ben-Nun and T. J. Mart´ınez, J. Chem. Phys. 108, 7244 (1998).

219.M. Ben-Nun and T. Mart´ınez, J. Chem. Phys. 112, 6113 (2000).

220.T. J. Mart´ınez, M. Ben-Nun, and G. Ashkenazi, J. Phys. Chem. 100, 2847 (1996).

221.M. Ben-Nun and T. Mart´ınez, J. Phys. Chem. A 103, 10517 (1999).

222.M. Hack, A. Wensmann, D. Truhlar, M. Ben-Nun, and T. Martinez, J. Chem. Phys. 115, 1172 (2001).

223.D. Kohen, F. Stillinger, and J. Tully, J. Chem. Phys. 109, 4713 (1998).

224.M. Topaler, M. Hack, T. Allison, Y.-P. Liu, S. Mielke, D. Schwenke, and D. Truhlar, J. Chem. Phys. 106, 8699 (1997).

225.P. Cattaneo and M. Persico, J. Phys. Chem. A 101, 3454 (1997).

226.A. Ferretti, G. Granucci, A. Lami, M. Persico, and G. Villani, J. Chem. Phys. 104, 5517 (1996).

227.U. Mu¨ller and G. Stock, J. Chem. Phys. 107, 6230 (1997).

228.M. Thoss, W. Miller, and G. Stock, J. Chem. Phys. 112, 10282 (2000).

229.M. Schmidt and M. Gordon, Ann. Rev. Phys. Chem. 49, 233 (1998).

230.M. Garavelli, P. Celani, F. Bernardi, M. Robb, and M. Olivucci, J. Am. Chem. Soc. 119, 6891 (1997).

231.H.-J. Werner and W. Meyer, J. Chem. Phys. 74, 5794 (1981).

232.B. Lengsfield and D. Yarkony, Adv. Chem. Phys. 82(part 2), 1 (1992).

233.N. Yamamoto, T. Vreven, M. Robb, M. Frisch, and H. Schlegel, Chem. Phys. Lett. 250, 373 (1996).

234.D. Yarkony, in Modern Electronic structure theory, D. Yarkony, ed., World Scientific, Singapore, 1995, pp. 643–721.

235.T. Neuhauser, N. Sukumar, and S. Peyerimhoff, Chem. Phys. 194, 45 (1995).

236.T. Mart´ınez, Chem. Phys. Lett. 272, 139 (1997).

237.I. Palmer, I. Ragazos, F. Bernardi, M. Olivucci, and M. Robb, J. Am. Chem. Soc. 115, 672 (1992).

238.M. Beer and H. Longuet–Higgins, J. Chem. Phys. 23, 1390 (1955).

239.B. Carpenter, Ang. Chem. Int. Ed. Engl. 37, 3340 (1998).

240.A. J. Wurzer, T. Wilhelm, J. Piel, and E. Riedle, Chem. Phys. Lett. 299, 296 (1999).

241.A. Warshel, Z. Chu, and J.-T. Hwang, Chem. Phys. 158, 303 (1991).

242.V. Buß, O, Weingart, and M. Sugihara, Ang. Chem. Int. Ed. Engl. 39, 2784 (2000).

applying direct molecular dynamics to non-adiabatic systems 431

243.M. Ben-Nun, F. Molnar, L. H., J. Phillips, T. Mart´ınez, and K. Schulten, Faraday Discuss. 447 (1998).

244.M. Ben-Nun and T. Mart´ınez, J. Phys. Chem. A 102, 9607 (1998).

245.T. Mart´ınez and R. Levine, Chem. Phys. Lett. 259, 252 (1996).

246.T. Mart´ınez and R. Levine, J. Chem. Phys. 105, 6334 (1996).

247.M. Ben-Nun and T. Mart´ınez, Chem. Phys. Lett. 298, 57 (1998).

248.M. Ben-Nun and T. Mart´ınez, Chem. Phys. 259, 237 (2000).

249.M. Hartmann, J. Pittner, and V. Bonacˇic´-Koutecky´, J. Chem. Phys. 114, 2123 (2001).

250.C. Ballhausen and A. Hansen, Ann. Rev. Phys. Chem. 23, 15 (1972).

251.D. Bohm, Phys. Rev. 85, 166 (1952).

252.P. Ehrenfest, Z. Phys. 45, 455 (1927).

The Role of Degenerate States in Chemistry: Advances in Chemical Physics, Volume 124.

Edited by Michael Baer and Gert Due Billing. Series Editors I. Prigogine and Stuart A. Rice. Copyright # 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-43817-0 (Hardback); 0-471-43346-2 (Electronic)

CONICAL INTERSECTIONS IN MOLECULAR PHOTOCHEMISTRY: THE PHASE-CHANGE APPROACH

YEHUDA HAAS and SHMUEL ZILBERG

Department of Physical Chemistry and the Farkas Center for Light Induced Processes, Hebrew University of Jerusalem, Jerusalem, Israel

CONTENTS

I.Introduction

A.A Chemical Reaction as a Two-State System

B.Anchors

C.Anchors, Molecules and Independent Quantum Species II. The Phase-Change Rule and the Construction of Loops

A.Construction of Loops: Nature of the Coordinates III. Phase Change in a Chemical Reaction

A.Pericyclic Reactions

B.Generalization to Any Reactions

1.Reactions Involving Sigma Bonds Only

2.Reactions Involving p Bonds

IV. Loop Construction for Photochemical Systems

A.Three-Electron Systems

B.Four-Electron Systems

1.Four p Electrons: Butadiene Ring Closure

2.cis–trans Isomerization: 2 p and 2 s Electrons

3.Ammonia and Chiral Systems

C.Four Electrons in Larger Systems

D.More Than Four Electrons

V. Longuet-Higgins Loops and the Jahn–Teller Theorem

A.An Example: The Cyclopentadienyl Radical and Cation Systems

1.Cyclopentadienyl Radical (CPDR)

2.Cyclopentadienyl Cation (CPDC)

433