Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Modern Organocopper Chemistry

.pdf
Скачиваний:
88
Добавлен:
15.08.2013
Размер:
6.87 Mб
Скачать

Modern Organocopper Chemistry. Edited by Norbert Krause

Copyright > 2002 Wiley-VCH Verlag GmbH

ISBNs: 3-527-29773-1 (Hardcover); 3-527-60008-6 (Electronic)

xi

Preface

‘‘When one equivalent of cuprous iodide was treated with one equivalent of methyllithium the yellow, ether-insoluble product was formed. Both the precipitate and the ether solution gave a negative color test with Michler ketone. . . . However, when one equivalent of cuprous iodide was treated with two equivalents of methyllithium a clear, practically colorless ether solution was formed. This ether solution gave a strong color test.’’

H. Gilman, R. G. Jones, L. A. Woods, ‘‘The Preparation of Methylcopper and some Observations on the Decomposition of Organocopper Compounds’’, J. Org. Chem. 1952, 17, 1630–1634.

Fifty years ago, Gilman and coworkers marked the beginning of the era of organocopper reagents as synthetic tools in organic chemistry by describing the first preparation of an organocuprate, namely lithium dimethylcuprate (Me2CuLi LiI). Nonetheless, it took more than a decade after this discovery until the widespread use of organocuprates was initiated by the seminal work of House, Corey and others. Soon, the synthetic versatility of organocopper compounds and in particular those of cuprates (which in the case of the composition R2CuLi LiX are referred to as Gilman reagents) was exploited and, in its wake, created an abundance of new reagents, methods, and applications.

Notable in this respect are the introduction of heterocuprates, the use of ‘‘dummy ligands’’ in order to improve the ‘‘economy’’ of the reagents, the implementation of ‘‘higher-order’’ and ‘‘lower-order’’ cuprates and the development of chiral organocopper reagents. Last but not least, the refinement of both theoretical and experimental methods (e.g., X-ray, NMR spectroscopy, kinetics) has shed light on the structures of organocopper compounds and the mechanism of their reactions. Although nowadays regarded as indispensable tools in the repertoire of synthetic organic chemists, organocopper chemistry is still a vivid field with numerous new copper-promoted transformations and chiral catalysts being developed over the last years.

This book captures recent advances of organocopper chemistry and serves as a detailed guide to the high standard now reached in the field. Brief summaries of previous achievements as well as thorough discussions of new methods and techniques facilitate (even for students) the entry into Modern Organocopper Chemistry, an area that will certainly witness further exciting discoveries in the near future.

xii Preface

Selected authors, all of them being protagonists in the respective area, provide profound expertise about both experimental and theoretical aspects of coppermediated transformations to a wide range of scientists in academia and industry. Combined with essays about structure and mechanism (chapters 1 and 10), Modern Organocopper Chemistry compiles novel techniques for the generation of functionalized organocopper reagents (chapter 2) and heteroatomas well as heteroatomalkylcuprates (chapter 3). Application of these organometallics in reactions with extended multiple bond systems (chapter 4), in reductions (chapter 5) and in stereoselective conjugate addition and substitution reactions (chapters 6–8), as well as their use for the synthesis of biologically active products (chapter 9), round out this monograph

The idea of this book, bringing together all important aspects of Modern Organocopper Chemistry and presenting them in a prolific way, has emerged over the last years in discussions with many colleagues, students and friends. Here, the European Commission deserves special mention for genereous support of several projects within the framework European Cooperation in the Field of Scientific and Technical Research (COST). I thank the authors of this volume for their determination to complete their contribution in time of the 50th anniversary of Gilman’s groundbreaking discovery. Finally, I dedicate this monograph to the over 2000 scientists mentioned in the author index for their original contributions which made the book possible.

Dortmund, December 2001

Norbert Krause

Modern Organocopper Chemistry. Edited by Norbert Krause Copyright > 2002 Wiley-VCH Verlag GmbH ISBNs: 3-527-29773-1 (Hardcover); 3-527-60008-6 (Electronic)

xiii

List of Authors

Leggy A. Arnold

Department of Organic and Molecular

Inorganic Chemistry

Stratingh Institute

University of Groningen

Nijenborgh 4

NL-9747 AG Groningen

The Netherlands

Jan-Erling Ba¨ckvall

Department of Organic Chemistry

Arrhenius Laboratory

Stockholm University

S-10691 Stockholm

Sweden

Bodo Betzemeier

Department Chemie

Ludwig-Maximilians-Universita¨t Mu¨nchen

Butenandtstr. 5–13, Haus F

D-81377 Mu¨nchen

Germany

Bernhard Breit

Institut fu¨r Organische Chemie und Biochemie

Albertstr. 21 D-79104 Freiburg Germany

Yukiyasu Chounan

Department of Natural Science

Faculty of Education

Hirosaki University

Hirosaki 036-8560

Japan

Peter Demel

Institut fu¨r Organische Chemie und Biochemie

Albertstr. 21

D-79104 Freiburg

Germany

R. Karl Dieter

Hunter Laboratory

Department of Chemistry

Clemson University

Clemson, SC 29634-0973

USA

Ben L. Feringa

Department of Organic and Molecular

Inorganic Chemistry

Stratingh Institute

University of Groningen

Nijenborgh 4

NL-9747 AG Groningen

The Netherlands

Anja Ho mann-Ro¨der

Dortmund University

Organic Chemistry II

D-44221 Dortmund

Germany

Rosalinde Imbos

Department of Organic and Molecular

Inorganic Chemistry

Stratingh Institute

University of Groningen

Nijenborgh 4

NL-9747 AG Groningen

The Netherlands

Johann T. B. H. Jastrzebski

Debye Institute

Department of Metal-Mediated Synthesis

Utrecht University

Padualaan 8

NL-3584 CH Utrecht

The Netherlands

xivList of Authors

Sofia E. Karlstro¨m

Department of Organic Chemistry Arrhenius Laboratory

Stockholm University S-10691 Stockholm Sweden

Paul Knochel Department Chemie

Ludwig-Maximilians-Universita¨t Mu¨nchen Butenandtstr. 5–13, Haus F

D-81377 Mu¨nchen Germany

Norbert Krause Organic Chemistry II Dortmund University D-44221 Dortmund Germany

Bruce H. Lipshutz

Department of Chemistry & Biochemistry University of California

Santa Barbara, CA 93106 USA

Seiji Mori

Department of Environmental Sciences Ibaraki University

Mito 310-8512 Japan

Robert Naasz

Department of Organic and Molecular

Inorganic Chemistry

Stratingh Institute

University of Groningen

Nijenborgh 4

NL-9747 AG Groningen

The Netherlands

Eiichi Nakamura

Department of Chemistry

The University of Tokyo

Bunkyo-ku

Tokyo 113-0033

Japan

Gerard van Koten Debye Institute

Department of Metal-Mediated Synthesis Utrecht University

Padualaan 8 NL-3584 CH Utrecht The Netherlands

Yoshinori Yamamoto

Department of Chemistry

Graduate School of Science

Tohoku University

Sendai 980-8578

Japan

Modern Organocopper Chemistry. Edited by Norbert Krause Copyright > 2002 Wiley-VCH Verlag GmbH ISBNs: 3-527-29773-1 (Hardcover); 3-527-60008-6 (Electronic)

369

Subject Index

a

acceptor-substituted dienes

 

1,4-addition 146

 

 

1,6-addition 146

 

 

addition, regioselectivity of

145

acceptor-substituted enynes

 

activation parameters

158

 

1,4-addition

124, 150, 153

 

1,6-addition

124f, 150 , 160, 316, 321

anti-Michael addition

153

 

kinetic measurements

158

 

mechanism

158f

 

 

NMR spectroscopic investigations 158

rate-determining step

158

 

1,4-reduction

153

 

 

1,6-reduction

153

 

 

tandem 1,6- and 5,6-addition

151

acceptor-substituted polyenynes

 

1,8-addition

159, 316

 

 

1,10-addition

159f, 316

 

1,12-addition

159f, 316

 

acetylenic ethers

 

 

 

 

polyfunctional

64

 

 

acridones

109

 

 

 

 

a-acyloxycuprates

115

 

 

a-acylthiocuprates

115

 

 

1,4-addition

53, 124, 188, 289f, 293f, 310,

315, 330, 338, 340; see also respective

substrates and reagents

 

activation parameters

321

 

active substrate control

190

 

acyclic enones

242

 

 

aldol reaction

225

 

 

auxiliary-controlled 208

 

BF3 activation

333f

 

 

catalytic

129, 133

 

 

catalytic cycle

233

 

 

CIDNP

320

 

 

 

 

copper-catalyzed

130, 224, 228 , 234,

236 , 239, 242f, 252, 322

 

cyclic enones 239

 

 

 

2-cyclopentenone

240f

 

diastereoselectivity 189 , 198 , 202 ,

208f, 324

 

 

 

 

 

directed

200

 

 

 

 

enantioselectivity

2, 32, 127 , 224 , 229 ,

234, 236 , 239 , 252 , 316f, 322

ESR spectroscopy

320

 

four-centered mechanisms

318

functionalized organocopper compounds

46, 51, 54, 65f, 68

 

 

Grignard reagents

1

 

 

kinetic measurements

320f

kinetic isotope e ects

320, 322f, 335

Lewis acid activation

190, 199f, 332

mechanism

38, 233, 315, 318f, 321, 322f,

327

 

 

 

 

 

 

Me3SiCl acceleration

333

nickel-catalyzed

229

 

 

NMR spectroscopy

38, 323

passive substrate control

190

rate-determining step

320, 322, 335

rhodium-catalyzed

227, 255

six-centered mechanisms

318

solvent e ects

318

 

 

transition states

324

 

 

1,6-addition

124f, 150 , 160, 316

diastereoselectivity

158

 

kinetic isotope e ects

158

Lewis acid activation

153

 

mechanism

158f, 321

 

NMR Spectroscopy

158

 

rate-determining step

158

1,8-addition

159, 316

 

 

1,10-addition

159f, 316

 

 

1,12-addition

159f, 316

 

 

alkenylzirconocenes

 

 

 

cross-coupling

73

 

 

 

a-alkoxyalkenylcuprates

 

 

1,4-addition

112

 

 

 

370

Subject Index

 

 

 

 

 

 

a-alkoxyalkylcuprates

110f, 114f

 

 

1,4-addition

111, 113, 132

 

 

cyclic

111

 

 

 

 

 

 

enantiomerically pure

111

 

isomerization

111

 

 

 

racemization

111

 

 

 

 

a-alkoxyalkyllithium reagents

110

 

aldol reactions

 

 

 

 

 

 

diastereoselectivity

87

 

 

alkenyl cuprate

91

 

 

 

 

alkenylcopper compounds

 

 

cyclization 67

 

 

 

 

 

functionalized

52

 

 

 

 

alkoxy(alkyl)cuprates

 

 

 

 

1,4-addition 127 , 226

 

 

chiral 127 , 226

 

 

 

 

dynamic ligand exchange

129

 

enantioselectivity 127 , 226

 

alkylcopper compounds

 

 

 

b-elimination

167

 

 

 

 

7-[(E)-alkylidene]-cephalosporins 108

 

alkynes

 

 

 

 

 

 

 

carbocupration

73, 145

 

 

germylcupration

100

 

 

hydrozirconation

71f

 

 

methylalumination

54

 

 

silylcupration

82, 93 , 96

 

 

stannylalumination 54

 

 

stannylcupration

82, 91, 93 , 96 , 99f

 

silylmagnesiation

95

 

 

alkynyl epoxides

 

 

 

 

 

 

kinetic resolution

284f

 

 

alkynylcerium reagent

214

 

 

alkynylcuprate

53f

 

 

 

 

5-alkynylidene-1,3-dioxan-4-ones 157

 

allenes

150, 153, 155, 172

 

 

chiral

157f

 

 

 

 

 

 

functionalized

152

 

 

 

regioselectivity

99

 

 

 

silylcupration

82, 93, 96, 100

 

stannylcupration

82, 93, 99

 

sterically encumbered

152, 156

 

b-allenic esters

152, 154

 

 

allenic amino acids

157

 

 

allenic copper(III) intermediate

 

reductive elimination

158

 

 

allenic natural products

156

 

 

allenolate 325

 

 

 

 

 

 

protonation

91

 

 

 

 

 

allenyl amines

121

 

 

 

 

allenyl enolate

150, 154

 

 

aldol reactions

156

 

 

 

carbometalation

151

 

 

 

electrophilic trapping

155

 

oxidation

156

 

 

protonation

154f

 

allenylketene acetals

155f

allenylphosphine oxide 325

allylic substititon

see SN 2 0 substitution

allyl thioethers

 

 

 

SN20 substitution

266

allylcuprate

102

 

 

allylic A1;3 strain

85, 193, 196, 198, 213f, 217

allylic carbamates

 

 

SN20 substitution

263f

allylic sulfides

 

 

 

SN20 substitution

267

allylic sulfoximines

 

SN20 substitution

264

ambident enolate

146

ambident substrates

145

amido(alkyl)cuprates

108

1,4-addition

127

 

chiral 127

intramolecular allylic rearrangement 129

NMR spectroscopy 127

reductive elimination

109

theoretical calculations

127

thermal stability

 

125

 

(G)-amijitrienol 92

 

 

amino acids

 

 

 

 

non-protenogenic

107

 

a-amino acids

99

 

 

 

functionalized

94

 

a-amino alcohols

107

 

b-amino alcohols

107

 

a-aminoalkylcuprates

80, 109, 115

1,2-addition

117

 

 

1,4-addition 117

 

enantiomerically pure

121

substitution reactions

118

thermal stability

 

119

 

a-aminoalkylstannanes

 

1,4-addition

115

 

 

7-aminocephalosporanic acid 300

anhydroretinols

100

 

annulation

 

 

 

 

enantioselectivity

252

antiestrogens

148

 

 

( )-aristermycin 110 arylchromium enone complex

planar chiral

209

arylcopper compounds

functionalized 2, 16, 46, 49f

arylcuprates

 

aggregation

28

molecular weight determination 27 NMR spectroscopy 27

a-arylselenoalkylcuprates 114

a-arylthiocuprates 115

aurodox

100

axial chirality 150, 152, 156

aziridines

285f, 300, 305, 327

desymmetrization 285

b

B956

303, 305

 

 

B957

303, 305

 

 

bafilomycin A1

293

 

 

Bartlett pear constituent

147

 

benzoquinone monoacetals

 

1,4-addition

247

 

 

desymmetrization 247

 

 

biaryls

22

 

 

 

atropselective coupling

202

 

palladium-catalyzed coupling

202

symmetric

4, 16, 25

 

 

BINAP

176f, 185, 227, 255

 

BINOL

230f, 234, 236 , 241 , 282

BIPHEMP 176f

 

 

bis(aryl)copper(II) compounds

4

1,2-bis-(diphenylphosphino)ethane (DPPE)

10, 11, 16, 33

 

 

bis-(diphenylphosphine)ferrocene (DPPF) 185 bis-(diphenylphosphino)methane (DPPM)

10, 11

 

 

 

bis(mesityl)copper anions 16

bislactim ether

148

 

boron-zinc exchange

59f, 228f

a-borylalkylcuprates

115

brevetoxin B

296f

 

bromoallene

305

 

bromothiophene

50

 

c

( )-capnellane 84

 

 

carbocupration

47, 67, 73, 145, 289, 309,

315f, 323f, 329, 340

 

four-centered mechanism

325

intramolecular 73

 

mechanism

325, 327

 

rate-determination step

326

reductive elimination sequence 73

trap-and bite-mechanism

326

carbolithiation

329

 

 

carbacyclin analogues

106

 

CBS reduction

280

 

 

cephalosporin

108, 299

 

D3-cephems 299f

 

 

(G)-chiloscyphone 88

 

chiral amplification

see non-linear

enantioselectivity

 

 

 

 

Subject Index

371

 

 

 

chiral auxiliary

202f, 260, 262f, 268, 271

chirality transfer

213, 263

 

axis-to-center 156f

chlorotetaine

148

 

 

(þ)-compactin

84

 

 

p-complex 38, 112, 121, 150, 158, 160, 198.

233, 262, 319f, 321, 323, 336, 338

conjugate addition

see 1,4-addition, 1,6-

addition etc.

conjugate addition and elimination sequence

271

 

 

 

 

 

 

 

copper

 

 

 

 

 

 

 

oxidation states

3

 

 

 

copper arenethiolate

9, 23f, 31, 124f, 150,

154

 

 

 

 

 

 

 

chiral

2, 131, 272, 276

 

copper benzoate

 

23

 

 

 

copper boronate

 

52

 

 

 

copper enolate

169, 176f

 

 

copper hydride

167, 169, 171 , 176, 179f,

181f

 

 

 

 

 

 

 

chiral

177

 

 

 

 

 

 

powder X-ray di raction 1784

 

transmission electron microscopy

184

copper(I) salts

 

 

 

 

 

 

transmetalation

5

 

 

 

copper(II) salts

 

 

 

 

 

oxidizing properties

5

 

 

reduction

4

 

 

 

 

 

copper(III) intermediate

4 , 123, 131, 153,

262, 270, 319, 323, 328f, 331f, 336

reductive elimination

158, 160

 

copper-carbon bond

 

 

 

kinetic stability of

7

 

 

cortisone

334

 

 

 

 

 

(G)-crotanecine 95

 

 

 

12-crown-4 34

 

 

 

 

 

crown ether

328, 332

 

 

(þ)-cucurmene

84

 

 

 

(þ)-a-cuparenone

84

 

 

 

(þ)-b-cuparenone

84

 

 

 

b-cuprio(III) enolate

323

 

 

b-cuprio ketone

323

 

 

 

a-cuprio(I) ketone

324

 

 

cuprates

 

 

 

 

 

 

 

chiral

127, 148, 225

 

 

in situ regeneration

154

 

cyanocuprates

 

26

 

 

 

aggregation

 

36

 

 

 

EXAFS

36

 

 

 

 

 

higher-order

2, 26, 34 , 81, 337f

 

lower-order

34 , 153, 190, 212, 298, 337

molecular weight determinations

36f

NMR spectroscopy

35f, 81, 337

 

372

Subject Index

 

 

 

 

 

 

 

cyanocuprates (cont.)

 

functionalized

280

 

 

 

reactivity

35

 

 

preparation

59f

 

theoretical studies

337

dipeptide isosteres

305

 

XANES

36

 

 

ortho-diphenylphosphinobenzoyl (o-DPPB)

 

X-ray crystal structure determination 35f,

group

201f

 

81, 337

 

 

 

a-dithioalkylcuprates

 

cyano-Gilman cuprates

37, 109f, 150, 152,

1,4 addition

113

157, 162, 190, 194, 196, 209, 217, 294,

dummy ligand

124, 167, 335f

296, 300, 302, 316, 337

dynemicin

114

 

 

h5-cycloheptadienyliron complexes 63

dysidiolide

298f

 

 

2,5-cyclohexadienone ethers

 

 

 

 

 

1,4-addition

248

 

e

 

 

 

 

2,5-cyclohexadienone monoacetals

eicosanoid

300f

 

 

1,4-addition

248

 

elaiophylin

 

 

 

2-cyclohexenones 243

electrophiles

 

kinetic resolution

243

hard

155

 

cyclosporin A

294

 

soft

155

 

 

 

 

enediynes

 

 

d

 

 

stannylcupration

96, 100

Davis’ reagent

193f

( )-enterolactone 84

density functional (DFT) calculations 330f

enyne acetates

 

(þ)-14-deoxyisoamijiol 106

SN200 substitution

161f

deprotonation

 

 

enyne oxiranes

 

asymmetric

121

 

SN200 substitution

161

des-epoxy-rosaramycin 108

ephedrine

128f

 

Dewar-Chatt-Duncanson (DCD) complex

(G)-10-epi-elemol 106

321, 325f

 

 

epi-widdrol

106

 

dialkenylchloroboranes

epoxides

see oxiranes, vinyloxiranes

transmetalation

52

EPR spectroscopy

109

a-dialkoxyalkylcopper reagents

 

ethyl (2E,6Z)-2,6-dodecadienoate 147

1,4-addition

112

 

 

ethylenic acetals

 

 

 

4,40-di-t-butylbiphenyl (DTBB)

47

substitution reactions

269

3,4-dichlorocyclobutene-1,2-dione 64

EXAFS (extended X-ray absorption fine

Diels-Alder reactions

162

 

structure spectroscopy)

3, 36, 39, 318

intramolecular

65, 156, 289

 

 

 

 

 

dienyl acetals

 

 

 

 

f

 

 

 

 

chiral

161

 

 

 

 

Felkin-Anh model

192

 

SN20 substitution

161, 269

 

ferrocene thioethers

278

 

SN200 substitution

160, 269

ferrocene thiolates

277

 

 

dienylic carbonates

 

 

 

ferrocenes

 

 

 

 

SN20 substitution

161

 

chiral

277

 

 

 

dienylic carboxylates

 

 

ferrocenylamines 280f

 

 

SN20 substitution

160f

 

chiral

62

 

 

 

SN200 substitution

160f

 

FK-506 293f

 

 

 

a-dietyopterol

95

 

 

 

a-fluoroalkenylcuprates

122f

(þ)-dihydrocodeinone

106

 

a-fluoroalkylcuprates 122f

 

( )-dihydrocodeinone

106, 291

forskolin

289f

 

 

 

2,5-dihydrofurans

157

 

( )-frontalin 84

 

 

 

(G)-dihydrojasmone

113

 

frontier molecular orbitals

210f

(G)-dihydronepetalactone 104f

fullerenes

317

 

 

 

dimethyl dioxirane (DMDO)

157

 

 

 

 

 

diorganozinc reagents 55

 

g

 

 

 

 

chiral

60f

 

 

 

 

germylcopper reagents

 

 

SN20 substitution

62

 

1,4-addition 92f

 

 

 

 

 

Subject Index

373

 

 

 

 

germylcuprates

 

k

1,4-addition 92f

kinetic isotope e ects 130, 158, 317, 320,

SN2 substitution

106f

322f, 331, 335

SN20 substitution 106f

Kocienski rearrangement 306

Gilman cuprates

1, 26, 109, 145, 147, 152f,

 

 

167, 259, 295, 316, 337

l

gold(III) chloride

157

b-lactams 295f, 299

Grignard reagents

 

lactones

functionalized 47

 

1,4-addition 250

Grubb’s catalyst

253

 

(þ)-lanostenol 106

 

 

 

leaving group

h

 

 

chiral 218, 262

Hajos-Parrish annulation

252

[5-13C]-leucine 208

halogen-magnesium exchange 47 , 58

ligand-accelerated catalysis 227, 230 , 283

Heck reactions

95

 

localized molecular orbitals (LMOs) 326

a-heteroarylcuprates 112

 

logarithmic reactivity profiles 126f

a-heteroarylzinc cuprates

114

lower order cuprates 337

heteroatomalkylcuprates

 

 

1,4-addition

127

 

m

chiral 127

 

 

magnesium cuprates

non-transferable ligands

123

X-ray crystal structure determination 30

a-heteroatomalkylcuprates

79f, 109f, 114,

(þ)-magydardiendiol

84

 

121, 123, 134

 

 

 

( )-malyngolide 84

 

 

non-transferable ligands

123, 126

manoalide

 

306f

 

 

 

heteroatomcuprates

79f, 102, 134

mesitylcopper

12, 16, 23f, 33

chiral

129

 

 

 

 

 

metalate rearrangements

108, 289, 306f

hexamethyldisilazidocuprates

126

( )-methylenolactocin 57f

higher order cuprates30, 81, 153, 211f, 306

( )-N-methylephedrine 278

cryoscopy 337

 

 

 

methyl epijasmonate

57f

 

NMR spectroscopy

337

 

 

7a-methylestrone 148

 

Horner-Wadsworth-Emmons (HWE)

(3S, 4S)-4-methyl-3-heptanol 300f

olefination

 

202

 

 

 

methyl 2,4,5-tetradecatrienoate 156

HSAB principle

 

145, 155, 158, 229

(þ)-mevinolin 84

see 1,4-addition, 1,6-addition

hydrido cuprates

167f

 

 

Michael addition

in situ generation

172

 

 

etc.

 

 

 

 

 

 

1,4-reduction

 

172

 

 

 

Michael acceptors

 

 

 

hydroalumination

53

 

 

extended

146

 

 

 

hydroboration

228f

 

 

 

misoprostol

72

 

 

 

hydroboration/boron-zinc exchange 62

Mitsunobu reaction

292f

 

hydroformylation

202

 

 

molybdenum allyl complexes

hydrosilylation

181

 

 

 

chiral

209

 

 

 

 

a-hydroxyallenes

157, 284f

 

 

(þ)-morphine

106

 

 

hygrolidin

293

 

 

 

 

 

( )-morphine

106, 290f

 

 

 

 

 

 

 

 

Mukaiyama aldol reaction

178

i

 

 

 

 

 

 

multiple bond systems

 

iminophosphines

243

 

 

extended 145 , 160

 

iodine-zinc exchange

59f

 

 

muscone

128, 226, 240

 

3-iodo-2-indolylcopper 48

 

 

 

 

 

 

 

 

 

iodouracil

47

 

 

 

 

 

n

 

 

 

 

 

 

Ireland-Claisen rearrangement

156

natural products

289 ; see individual names

iron complexes

 

 

 

 

 

Nazarov cyclization

102

 

chiral

209

 

 

 

 

 

( )-neopanocin A

110

 

iso[7]-levuglandin D2

195, 294f

nitroalkenes

 

 

 

 

 

( )-Isopinocamphenylboran

61

1,4-addition

196, 224, 250f, 255

374Subject Index

3-nitrocoumarins

1,4-addition 251

nonlinear enantioselectivity 128, 131, 234f nontransferable ligands 2, 61, 79f, 108, 123,

126, 134, 167, 224, 272, 335 chiral 224

3-norcephalosporin 172 (G)-norruspoline 119 Nozaki-Hiyama-Kishi reaction 303

o

olivin 193, 195

 

 

 

 

 

 

 

olivomycin

193

 

 

 

 

 

 

organoaluminium reagents

 

 

 

transmetalation

51, 53f

 

 

 

organoargentates

27

 

 

 

 

 

organoaurates

27, 29, 328

 

 

 

organoboron reagents

 

 

 

 

 

transmetalation

51

 

 

 

 

organocopper(I) compounds

 

 

 

aggregation

2f, 7 , 11 , 16 , 25, 37, 225,

316

 

 

 

 

 

 

 

 

ate complex

10

 

 

 

 

 

 

autocatalytic decomposition

6

 

bearing acidic hydrogens

61

 

 

bonding

6

 

 

 

 

 

 

 

bridging groups

17f, 23

 

 

 

charge disproportionation

16

 

chiral 29, 61

 

 

 

 

 

 

cluster structure

339

 

 

 

 

coordinating substituents

18, 20, 24

coordination geometries

6f, 14, 18

coordination numbers

6

 

 

 

crystallization

3

 

 

 

 

 

decomposition

22, 25

 

 

 

degradation

10

 

 

 

 

 

 

functionalized

45

 

 

 

 

heteroatom-functionalized

25, 79

heteroleptic

17f, 22f

 

 

 

 

homoleptic 8, 18

 

 

 

 

 

b-hydrogen elimination process

6, 11

incorporation of gold

19

 

 

 

incorporation of silver

19

 

 

in syntheses of organotin halides

16

interaggregate exchange

22

 

 

intermolecular coordination

14

 

intramolecular coordination

6, 13

IR spectroscopy

3, 39

 

 

 

kinetically active species

37

 

 

Lewis acid-activation

217

 

 

 

molecular orbitals

7, 80, 210f, 326

molecular weight determinations

2,

11

 

 

 

 

 

 

 

 

NMR spectroscopy

3, 9, 22, 39

 

non-transferable ligands

2, 61, 79f, 108,

123, 126, 134, 167, 224, 272, 335

 

oxidation

5

 

 

 

 

 

 

oxidative decomposition

16

 

 

protonolysis

23

 

 

 

 

reaction with amines

108

 

 

resting-state species

3

 

 

 

self-assembly

22, 29

 

 

 

solubility

9, 14, 19

 

 

 

 

stability

25

 

 

 

 

 

 

stabilization

9f, 13

 

 

 

 

structure-reactivity relationship

3, 7, 14, 38f

thermal decomposition

11, 16, 23

 

thermal stability

9, 6, 9, 18

 

 

thermodynamic stability

18, 22, 37

 

three-center, two-electron bonding 2, 7, 13,

16

 

 

 

 

 

 

 

X-ray crystal structure determination

3 ,

8f, 11f, 17, 19 , 37

 

 

 

organocopper(II) compounds 5

 

 

one-electron reduction process

4

 

oxidizing properties

4f

 

 

 

two-electron reduction process

4

 

organocuprates

 

 

 

 

 

 

aggregation

19, 30

 

 

 

 

anionic

32

 

 

 

 

 

 

bridging groups

29

 

 

 

 

chiral 29

 

 

 

 

 

 

contact ion pairs (CIPs)

38f

 

 

p-coordination

33

 

 

 

 

disproportionation 32, 37

 

 

enantiomerically pure

32

 

 

heteroleptic

26f, 31

 

 

 

higher order

30, 81, 153, 211f, 306 , 337

homoleptic

26f, 32, 37

 

 

 

kinetically active species

32

 

 

molecular weight determination

27

 

neutral

27

 

 

 

 

 

 

NMR spectroscopy

2, 27, 32, 38

 

non-transferable ligands

108

 

 

orbital interactions

338

 

 

solvens-separated ion pairs (SSIPs)

38f

structure-reactivity relationship

26

 

thermodynamic stability

32

 

 

X-ray crystal structure determination

2,

26, 29

 

 

 

 

 

 

organolithium reagents

 

 

 

 

functionalized

45

 

 

 

 

transmetalation

45

 

 

 

organomagnesium reagents

 

 

functionalized

45, 47

 

 

 

transmetalation

45, 47 , 58

 

 

organomanganese reagents

 

 

1,4-addition

70f

 

 

 

 

Соседние файлы в предмете Химия