Скачиваний:
32
Добавлен:
15.08.2013
Размер:
186.22 Кб
Скачать

22. Nitric oxide from arginine: a biological surprise

993

only minor lack of the enzyme: homozygous mutant animals have stomachs with 1.5 3ð the stomachs of littermates and pyloric stenosis. They grow normally and breed at normal levels. Their brains appear normal. Except for the NOS, they appear to have the usual enzymes and the mutant mice seem to have the expected functions. Vasodilation of vascular penile beds does not depend upon the bNOS and the animals mate normally.

Prior to knockout mice, a number of neural functions were ascribed to NO function. The fact that these have not appeared does not mean that the functions do not exist but that more than one function can apply. Thus, in penile tissue of rates NOS nerves are prominent144 and electrical stimulation produced penile erection145,146. Normal mating of knockout mice suggests that this function can take place without NO participation, but this leaves the NO function to be assigned to an auxiliary role, perhaps to play a more important role when the alternative neuroexciter is deficient. Similarly, Huntington and Alzheimer diseases might occur when two different neurotransmitters are deficient.

The second mice to undergo a deficiency of iNOS were produced by MacMicking’s group147. These animals were again, like the bNOS, grossly normal. When tested against certain toxic elements (Listeria, lymphoma cells), the iNOS were more susceptible, showing that the NO produced had an effect but was not the difference that some of the experimenters had anticipated. Testing against septic shock, the drop in arterial pressure was only 15% in 2 hours with LPS and the animals survived whereas wild-type mice lost 64%, of the arterial pressure and all died. However, the death due to killed Propionobacterium acne, a granuloma-forming bacterium, was the same for mutant and wild-type mice. In this case it is clear that the NO does not deal with all of the functions of live bacteria and that iNOS can affect only those properties protected against by NO.

The third eNOS has very recently been knocked out in mice in work that has yet to be published by P. L. Huang. Although he cannot give the data of the paper, he indicates that the animals are fertile and that they have higher blood pressure than their littermates. Since this form of NOS is primarily concerned with blood pressure, this is the feature that is emphasized in the preliminary paper.

Within the past two years, NOS has been shown in a variety of invertebrates, from slime molds148 through molluscs149. The exact function of NO in invertebrates is still unknown and is part of the puzzle of the purpose of this material in biology. According to Nathan and Xie150, it is quite within the scope of biology for some modifications to be met on purification of the invertebrate enzymes. The nomenclature of the mammalian enzymes studied in the present situations is suggested by these authors to be mathematical in place of alphabetical. Thus bNOS, or ncNOS, would be referred to as I, iNOS would be called II and eNOS, or ecNOS, would be called III.

IX. CONCLUSIONS

From 1987 until now only a few years have passed, but in that time a new physiological mediator has been found, NO. In this short time the three enzymes that individually mediate this reaction in mammals have been characterized and the occurrence of similar enzymes in invertebrates have been determined. It is not only new, but surprising, that this physiological agent is a gas that is formed in one cell and spreads its function to nearby cells, but that its function is limited by oxidation. In the case of brain, Verma and coworkers151 have recently suggested that carbon monoxide may be a similar activator of cGMP. The period of surprises is not yet over.

X.REFERENCES

1.R. F. Furchgott, in Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomic Nerves and Endothelium (Ed. P. M. Vanhoutte), pp. 401 414. Raven Press, New York, 1988.

994

Alan H. Mehler

2.L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns and G. Chardhuri, Proc. Natl. Acad. Sci. USA, 84, 9265 (1987).

3.P. M. Vanhoutte, in Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomic Nerves and Endothelium (Ed. P. M. Vanhoutte), Raven Press, New York, 1988.

4.S. Moncada, R. M. J. Palmer, and E. A. Higgs, Pharmacol. Rev., 43, 109 (1991).

5.R. F. Furchgott and J. V. Zawadzki, Nature, 288, 373 (1980).

6.F. Murad, C. Mittal, W. P. Arnold, S. Katsudi and H. Kimura, Adv. Cyclic Nucleotide Res., 9, 145 (1978).

7.D. Keilin and E. F. Hartree, Nature, 173, 720 (1954).

8.M. W. Radomski, R. M. J. Palmer and S. Moncada, Br. J. Pharmacol., 92, 639 (1987).

9.M. W. Radomski, R. M. J. Palmer and S. Moncada, Lancet ii, 1057 (1987).

10.M. W. Radomski, R. M. J. Palmer and S. Moncada, Br. J. Pharmacol., 92, 181 (1987).

11.R. M. J. Palmer, A. G. Ferrige and S. Moncada, Nature, 327, 524 (1987).

12.P. J. A. Hutchinson, R. M. J. Palmer and S. Moncada, Eur. J. Pharmacol., 141, 145 (1987).

13.R. F. Furchgott, P. D. Cleary, J. V. Zawadzki and D. Jothionandan, J. Cardiovasc. Pharmacol., 6, Suppl, 2, S336 (1984).

14.R. F. Furchgott, W. Martin, D. Jothionandan and G. M. Villari, Proc. IHPHAR 9th Int. Cong. Pharm., Vol. 1 (Eds. W. Paton, G. Mitchell and P. Turner), London, pp. 149 157

15.W. Martin, G. M. Villari, D. Jothionandan and R. F. Furchgott, J. Pharmacol. Exp. Ther., 232, 708 (1985).

16.W. Martin, G. M. Villari, D. Jothionandan and R. F. Furchgott, J. Pharmacol. Exp. Ther., 233, 679 (1985).

17.S. Katsudi, W. Arnold, C. Mittal and F. Murad, J. Cyclic Nucleotide Res., 3, 23 (1977).

18.W. P. Arnold, C. Mittal, S. Katsudi and F. Murad, Proc. Natl. Acad. Sci., USA, 79, 3203 (1977).

19.P. A. Craven and F. R. DeRubertis, J. Biol. Chem., 253, 8433 (1978).

20.C. A. Gruetter, B. K. Barry, D. B. McNamara, P. J. Kadowitz and L. J. Ignarro, J. Pharmacol. Exp. Ther., 212, 469 (1980).

21.B. T. Mellion, L. J. Ignarro, E. H. Ohlstein, E. G. Pontecorvo, A. Hyman and P. J. Kadowitz,

Blood, 57, 946 (1981).

22. B. T. Mellion, L. J. Ignarro, C. B. Meyers, E. H. Ohlstein, B. A. Ballot, A. L. Hyman and

P. J. Kadowitz, Mol. Pharmacol., 23, 653 (1983).

23.P. Needleman and E. M. Johnson, J. Pharmacol. Exp. Ther., 184, 709 (1973).

24.P. Needleman, B. Jakschik and E. M. Johnson, J. Pharmacol. Exp. Ther., 187, 324 (1973).

25. L. J. Ignarro, H. Lippton, J. C. Edwards, W. H. Baricos, A. L. Hyman, P. J. Kadowitz and

C.A. Gruetter, J. Pharmacol. Exp. Ther., 218, 739 (1981).

26.L. J. Ignarro, J. C. Edwards, D. Y. Gruetter, B. K. Barry and C. A. Gruetter, FEBS Lett., 110, 275 (1980).

27.L. J. Ignarro, B. K. Barry, D. Y. Gruetter, J. C. Edwards, E. H. Ohlstein, C. A. Gruetter and

W.H. Baricos, Biochem. Biophys. Res. Commun., 94, 93 (1980).

28.L. J. Ignarro and C. A. Gruetter, Biochem. Biophys. Acta, 631, 221 (1980).

29.J. B. Hibbs, Jr., Z. Vavrin and R. R. Taintor, Immunology, 138, 550 (1987).

30.J. B. Hibbs, Jr., R. R. Taintor, Z. Vavrin and E. M. Racklin, Biochem. Biophys. Res. Commun., 157, 87 (1988).

31.R. Iyengar, D. J. Stuehr and M. A. Marletta, Proc. Natl. Acad. Sci. USA, 84, 6369 (1987).

32.L. J. Ignarro, R. E. Byrns, G. Buga and K. S. Wood, Circ. Res., 61, 866 (1987).

33.M. A. Marletta, P. S. Yoon, R. Iyengar, C. D. Leaf and J. S. Wishnok, Biochemistry, 24, 8706 (1988).

34.J. B. Hibbs, Jr., R. R. Taintor and Z. Vavrin, Science, 235, 473 (1987).

35.D. J. Stuehr, S. S. Gross, I. Sakuma, R. Levi and C. F. Nathan, J. Exp. Med., 169, 1011 (1989).

36.M. A. Tayeh and M. A. Marletta, J. Biol. Chem., 264, 19654 (1989).

37.N. S. Kwon, C. F. Nathan and D. J. Stuehr, J. Biol. Chem., 264, 20496 (1989).

38.N. S. Kwon, C. F. Nathan, F. Gilkar, O. W. Griffith, D. E. Matthew and D. J. Stuehr, J. Biol. Chem., 265, 13442 (1990).

39.A. M. Leone, R. M. J. Palmer, R. G. Knowles, P. L. Francis, D. S. Ashton and S. Moncada, J. Biol. Chem., 266, 23790 (1991).

40.J. Garthwaite, S. J. Charles and R. Chess-William, Nature, 336, 385 (1988).

41.R. G. Knowles, M. Palacios, R. M. J. Palmer and S. Moncada, Proc. Natl. Acad. Sci. USA, 86, 5159 (1989).

22. Nitric oxide from arginine: a biological surprise

995

42.D. S. Bredt and S. H. Snyder, Proc. Natl. Acad. Sci. USA, 86, 9030 (1989).

43.D. S. Bredt and S. H. Snyder, Proc. Natl. Acad. Sci. USA, 87, 682 (1990).

44.D. S. Bredt, P. M. Hwang, C. E. Glatt, C. Lowenstein, R. R. Reed and S. H. Snyder, Nature, 351, 714 (1991).

45.B. Mayer, M. John and E. Bohme,¨ FEBS Lett., 277, 215 (1990).

46.H. H. H. W. Schmidt, J. S. Pollock, M. Nakane, L. D. Gorsky, U. Forstermann¨ and F. Murad,

Proc. Natl. Acad. Sci. USA, 88, 365 (1991).

47.R. M. J. Palmer, D. D. Rees, D. S. Ashton and S. Moncada, Biochem. Biophys. Res. Commun., 153, 1251 (1988).

48.H. H. H. W. Schmidt, H. Nau, W. Wittfoht, J. Gerlack, K. -E. Prescher, N. M. Klein, F. Niroomand and E. Bohme,¨ Eur. J. Pharmacol., 154, 213 (1988).

49.J. S. Pollock, U. Fostermann,¨ J. A. Mitchell, T. O. Warner, H. H. H. W. Schmidt, M. Nakane and F. Murad, Proc. Natl. Acad. Sci. USA, 88, 10480 (1992).

50.S. P. Janssens, A. Shimorichi, T. Quartermous, D. B. Bloch and K. D. Bloch, J. Biol. Chem.,

267, 14519 (1992).

51. W. C. Sessa, J. K. Harrison, C. M. Barber, D. Zeng, M. E. Durieux, D. D. D’Angelo,

K. R. Lynch and M. J. Peach, J. Biol. Chem., 267, 15274 (1992).

52.S. Lamas, P. A. Marsden, G. K. Lu, P. Tempst and T. Michel, Proc. Natl. Acad. Sci. USA, 89, 6348 (1992).

53. K. Nishida, D. G. Harrison, J. P. Navas, A. A. Fisher, S. P. Dockery, M. Uematsu,

R. M. Nerem, R. W. Alexander and T. J. Murphy, J. Clin. Invest., 90, 2092 (1992).

54.M. Kozak, Cell, 44, 283 (1986).

55.K. M. Boje and H. -L. Fung, J. Pharmacol. Exp. Ther., 253, 20 (1990).

56.L. Busconi and T. Michel, J. Biol. Chem., 268, 8410 (1993).

57.J. Liu and W. C. Sessa, J. Biol. Chem., 269, 11691 (1994).

58.D. J. Stuehr, H. J. Cho, N. S. Kwon, M. Weise and C. F. Nathan, Proc. Natl. Acad. Sci. USA, 88, 7773 (1991).

59.Y. Yui, R. Hattori, K. Kosuga, H. Eizawa and C. Kawai, J. Biol. Chem., 266, 12544 (1991).

60.L. J. Ignarro, Annu. Rev. Pharmacol. Toxicol., 30, 535 (1990).

61.C. F. Nathan and J. B. Hibbs Jr., Curr. Opin. Immunol., 3, 65 (1991).

62.S. Moncada, R. M. J. Palmer and E. A. Higgs, Pharmacol. Rev., 43, 109 (1991).

63. Q. -W. Xie, H. J. Cho, J. Calaycay, R. A. Mumford, K. M. Swiderek, T. D. Lee, A. Ding,

T.Troso, and C. Nathan, Science, 256, 225 (1992).

64.C. F. Nathan and D. J. Stuehr, J. Natl. Cancer Inst., 82, 726 (1990).

65.H. J. Cho, Q. -W. Xie, J. Calaycay, R. A. Mumford, K. M. Swiderek, T. D. Lee and C. Nathan,

J.Exp. Med., 176, 599 (1992).

66. Y. Yui, R. Hattori, K. Kosuga, H. Eizawa, K. Hiki, S. Ohkawa, K. Ohnishi, S. Terao and

C.Kawai, J. Biol. Chem., 266, 3369 (1991).

67.J. M. Hevel, K. A. White and M. A. Marletta, J. Biol. Chem., 266, 22789 (1991).

68.C. R. Lyons, G. J. Orloff and J. M. Cunningham, J. Biol. Chem., 267, 6370 (1992).

69.C. R. Lowenstein, C. S. Glatt, D. S. Bredt and S. H. Snyder, Proc. Natl. Acad. Sci. USA, 89, 6711 (1992).

70.J. Kishimoto, N. Spurr, M. Liao, L. Lizhi, P. Emson and W. Xu, Genomics, 14, 802 (1992).

71.A. V. Hall, H. Antoniou, Y. Wang, A. V. Cheung, A. M. Arbus, S. L. Olson, W. C. Lu, C. -

L.Kau and P. A. Marsden, J. Biol. Chem., 269, 33082 (1994).

72.P. A. Marsden, K. T. Schappert, H. S. Chen, M. Flowers, C. L. Sundell, J. Wilcox, S. Lamas and T. Michel, FEBS Lett., 307, 287 (1992).

73.R. Zhang, W. Min and W. C. Sesse, J. Biol. Chem., 270, 15320 (1995).

74.L. Busconi and T. Michel, J. Biol. Chem., 269, 25016 (1994).

75.R. C. Venema, H. S. Sayegh, J. F. Arnal and D. G. Harrison, J. Biol. Chem., 270, 14705 (1995).

76. D. A. Geller, C. J. Lowenstein, R. A. Shapiro, A. K. Nussler, M. DiSilvio, S. C. Wang, D. K. Nakayama, R. L. Simmons, S. H. Snyder and T. R. Billiar, Proc. Natl. Acad. Sci. USA, 90, 3491 (1993).

77.W. Xu, I. G. Charles, S. Moncada, P. Gorman, D. Sheer, L. Liu and P. Emson, Genomics, 21, 419 (1994).

78. N. A. Chartrain, D. A. Geller, P. P. Koty, N. F. Sitrin, A. K. Nussler, E. P. Hoffman,

T. R. Billar, N. I. Hutchison and J. S. Mudgett, J. Biol. Chem., 269, 6765 (1994).

79.R. M. J. Palmer and S. Moncada, Biochem. Biophys. Res. Commun., 158, 348 (1989).

996

Alan H. Mehler

80.S. Kaufman, in Methods in Enzymology (Ed. S. Kaufman), Academic Press, Orlando, 1987, pp. 3 27.

81.H. Fujisawa and S. Okuno, in Methods in Enzymology (Ed. S. Kaufman), Academic Press, Orlando, 1987, pp. 63 71, 83 87.

82.R. A. Pufahl and M. A. Marletta, Biochem. Biophys. Res. Commun., 193, 963 (1993).

83.N. M. Olken, K. M. Rusche, M. K. Richards and M. A. Marletta, Biochem. Biophys. Res. Commun., 177, 828 (1991).

84.J. Giovanelli, K. L. Campos and S. Kaufman, Biochem. Biophys. Res. Commun., 88, 7091 (1991).

85.J. M. Hevel and M. A. Marletta, Biochemistry, 31, 7160 (1992).

86.B. Mayer, M. John, B. Heinzel, E. R. Werner, H. Wachter, G. Schultz and E. Bohme,¨ FEBS Lett., 288, 187 (1991).

87.K. A. White and M. A. Marletta, Biochemistry, 31, 6627 (1992).

88.L. O. Nardi and A. J. Fulco, J. Biol. Chem., 261, 7160 (1986).

89.D. J. Stuehr and M. Ikeda-Saito, J. Biol. Chem., 267, 20547 (1992).

90.K. McMillan, D. S. Bredt, D. J. Hirsch, S. H. Snyder, J. E. Clark and B. S. S. Masters, Proc. Natl. Acad. Sci. USA, 89, 11141 (1992).

91.D. J. Stuehr, N. S. Kwon, C. F. Nathan, O. W. Griffith, P. L. Feldman and J. Wiseman, J. Biol. Chem., 266, 6259 (1991).

92.P. Klatt, K. Schmidt, G. Uray and B. Mayer, J. Biol. Chem., 268, 14781 (1993).

93.K. McMillan and B. S. S. Masters, Biochemistry, 32, 9875 (1993).

94.M. A. Marletta, J. Biol. Chem., 268, 12231 (1993).

95.P. L. Feldman, O. W. Griffith and D. J. Stuehr, Chem. Eng. News, Dec. 20, 26 38 (1993).

96.H. G. Korth, R. Sustmann, C. Thater, A. R. Butler and K. V. Ingold, J. Biol. Chem., 269, 17776 (1994).

97.K. J. Campos, J. Giovanelli and S. Kaufman, J. Biol. Chem., 270, 1721 (1995).

98.K. J. Baek, B. A. Theil, S. Lucas and D. J. Stuehr, J. Biol. Chem., 268, 21120 (1993).

99.D. K. Ghosh and D. J. Stuehr, Biochemistry, 34, 801 (1995).

100.J. Wang, D. J. Stuehr, M. Ikedo-Saito and D. L. Rousseau, J. Biol. Chem., 268, 22255 (1993).

101.E. A. Sheta, K. McMillan and B. S. S. Masters, J. Biol. Chem., 269, 15147 (1994).

102.K. McMillan and B. S. S. Masters, Biochemistry, 34, 3686 (1995).

103.P. -F. Chen, A. L. Tsai and K. K. Wu, J. Biol. Chem., 269, 25062 (1994).

104.M. K. Richards and M. A. Marletta, Biochemistry, 33, 14723 (1994).

105.J. Wang, D. L. Rousseau, H. M. Abu-Soud and D. J. Stuehr, Proc. Natl. Acad. Sci. USA, 91, 10512 (1994).

106.A. C. Hurshman and M. A. Marletta, Biochemistry, 34, 5627 (1995).

107.A. Matsuoka, D. J. Stuehr, J. S. Olson, P. Clark and M. Ikeda-Saito, J. Biol. Chem., 269, 20335 (1994).

108.J. M. Griscavage, J. M. Fukuto, Y. Komori and L. J. Ignarro, J. Biol. Chem., 269, 21644 (1994).

109.B. Mayer, P. Klatt, E. R. Werner and K. Schmidt, J. Biol. Chem., 270, 655 (1995).

110.H. M. Abu-Soud, L. L. Yoho and D. J. Stuehr, J. Biol. Chem., 269, 32047 (1994).

111.A. J. Hobbs, J. M. Fukuto and L. J. Ignarro, Proc. Natl. Acad. Sci. USA, 91, 10992 (1994).

112.H. M. Olken, Y. Osawa and M. A. Marletta, Biochemistry, 33, 14784 (1994).

113.H. M. Abu-Soud, P. L. Feldman, P. Clark and D. J. Stuehr, J. Biol. Chem., 269, 32318 (1994).

114.Y. Komori, G. C. Wallace and J. M. Fukuto, Arch. Biochem. Biophys., 315, 213 (1994).

115.R. A. Pufahl, J. S. Wishnok and M. A. Marletta, Biochemistry, 34, 1930 (1995).

116. E. P. Garvey, J. A. Oplinger, G. J. Tanoury, P. A. Sherman, M. Fowler, S. Marshall,

M. F. Harmon, J. E. Paith and E. S. Furfine, J. Biol. Chem., 269, 26669 (1994).

117.E. S. Furfine, M. F. Harmon, J. E. Paith, R. G. Knowles, M. Salter, R. J. Kiff, C. Duffy,

R.Hazelwood, J. G. Oplinger and E. P. Garvey, J. Biol. Chem., 269, 26677 (1994).

118.K. Narayanan, L. Speck, K. McMillan, R. G. Kilbourn, M. A. Hayward, B. S. S. Masters and

O.W. Griffith, J. Biol. Chem., 270, 11103 (1995).

119.D. J. Wolff and B. J. Griben, Arch. Biochem. Biophys., 311, 293 (1994).

120.D. J. Wolff and B. J. Griben, Arch. Biochem. Biophys., 311, 300 (1994).

121.D. J. Wolff and A. Lubeskie, Arch. Biochem. Biophys., 316, 290 (1994).

122.C. Hartneck, P. Klatt, K. Schmidt and B. Mayer, Biochem. J., 304, 683 (1994).

123.J. Xie, P. Roddy, T. K. Rife, F. Murad and A. P. Young, Proc. Natl. Acad. Sci. USA, 92, 1242 (1995).

124.M. Calcasi, M. Lafon-Cazal, S. Pietri and J. Backaert, J. Biol. Chem., 269, 12589 (1994).

22. Nitric oxide from arginine: a biological surprise

997

125.C. J. Lowenstein, E. W. Alley, T. Raval, A. M. Snowman, S. H. Snyder, S. W. Russell and

W. J. Murphy, Proc. Natl. Acad. Sci. USA, 90, 9730 (1993).

126.A. Weisz, S. Oguchi, L. Cicatiello and H. Esumi, J. Biol. Chem., 269, 8324 (1994).

127.J. L. Balligand, D. Ungureanu-Longrois, W. W. Simmons, D. Pimental, T. A. Malinski,

M.Kapturczuk, Z. Taha, C. J. Lowenstein, A. J. Davidoff, R. A. Kelly, T. W. Smith and

T.Michel, J. Biol. Chem., 269, 27580 (1994).

128.D. Kunz, H. Muhl, G. Walker and J. P. Pfeilschifter, Proc. Natl. Acad. Sci. USA, 91, 5387 (1994).

129.Q. -W. Xie, Y. Kashiwabara and C. Nathan, J. Biol. Chem., 269, 4705 (1994).

130.S. C. Chu, H. P. Wu, T. C. Banks, N. T. Eissa and J. Moss, J. Biol. Chem., 270, 10625 (1995).

131.Q. -W. Xie, H. Cho, Y. Kashiwabara, M. Baum, J. H. Wiedner, K. Elliston, R. Mumford and

C.Nathan, J. Biol. Chem., 269, 28500 (1994).

132. E. P. Garvey, J. V. Tuttle, K. Covington, B. M. Merrill, E. R. Wood, S. A. Baylis and

I. E. Charles, Arch. Biochem. Biophys., 311, 235 (1994).

133.J. L. Balligand, L. Kobzik, X. Han, D. M. Kaye, L. Belhassen, D. S. O’Hara, R. A. Kelly,

T. W. Smith and T. Michel, J. Biol. Chem., 270, 14582 (1995).

134.C. P. Weiner, I. Lizasoain, S. A. Baylis, R. G. Knowles, I. A. Charles and S. Moncada, Proc. Natl. Acad. Sci. USA, 91, 5212 (1994).

135. D. C. Jenkins, I. G. Charles, L. L. Thomsen, D. W. Moss, L. S. Holmes, S. A. Baylis,

P.Rhodes, K. Westmore, P. C. Emson and S. Moncada, Proc. Natl. Acad. Sci. USA, 92, 4392 (1995).

136.K. Schmidt, P. Klatt and B. Mayer, Biochem. J., 301, 313 (1994).

137.K. Schmidt, P. Klatt and B. Mayer, Biochem. J., 301, 645 (1994).

138.A. Hausladen and I. Fridovich, J. Biol. Chem., 269, 29405 (1994).

139.L. Castro, M. Rodriguez and R. Radi, J. Biol. Chem., 269, 29409 (1994).

140.M. Hecker, M. Boese, V. A. Schini-Kerth, A. Mulsch¨ and R. Busse, Proc. Natl. Acad. Sci. USA, 92, 4671 (1995).

141.M. Fulisch, J. Cardiovasc. Pharmacol., 17, Suppl. 3:S25 (1991).

142.J. Zhang, V. L. Dawson, T. M. Dawson and S. H. Snyder, Science, 263, 687 (1992).

143.P. L. Huang, T. M. Dawson, D. S. Bredt, S. H. Snyder and M. C. Fishman, Cell, 75, 1273 (1993).

144.L. J. Ignarro, P. A. Bush, G. M. Buga, K. S. Wood, J. M. Fukoto and J. Raifer, Biochem. Biophys. Res. Commun., 170, 843 (1990).

145.F. Holmquist, H. Hedlund and K. E. Anderson, Acta physiol. Scand., 141, 441 (1991).

146.N. Kim, K. M. Azazdoi, I. Goldstein and I. Saenz de Tejada, J. Clin. Invest., 88, 112 (1991).

147.J. D. MacMicking, C. Nathan, G. Hom, N. Chartrain, D. S. Fletcher, M. Trumbauer, K. Stevens,

Q.-W. Xie, K. Sokol, N. Hutchinson, H. Chen and J. S. Mudgett, Cell, 81, 641 (1995).

148.G. Werner-Felmayer, G. Golderer, E. R. Werner, P. Grobner¨ and H. Wachter, Biochem. J., 304, 105 (1994).

149.A. Gelperin, Nature, 369, 61 (1994).

150.C. Nathan and Q. -W. Xie, Cell, 78, 915 (1994).

151.A. Verma, D. J. Hirsch, C. E. Glatt, G. V. Ronnett and S. H. Snyder, Science, 295, 381 (1993).

Соседние файлы в папке Patai S., Rappoport Z. 1996 The chemistry of functional groups. The chemistry of amino, nitroso, nitro and related groups. Part 2