Скачиваний:
25
Добавлен:
15.08.2013
Размер:
1.47 Mб
Скачать

17. Syntheses and uses of isotopically labelled compounds

1079

has also been detected. Using D2O an isotope effect of about 1.5 was found. It has been suggested that 531 is the main precursor of 533. Dihydroanthraquinone 534 is formed at steady-state irradiation to 532 in deaerated MeOH642.

D

 

 

RO

OR

 

D

 

 

ROD

 

+

 

ROD

 

 

ROD

OR D

528 hν

hν

(527)

 

 

bridgehead alkene

N2

(529)

529: 527 in 1:3 ratio

 

 

(315)

 

 

 

 

 

O

 

O

 

O

H

C

C

C

Ph

 

OH

Ph

 

 

 

C

C

C

 

OH

 

Ph

O

(530)

(531)

(532)

 

OH

 

O

 

 

 

 

C OH

OH

C

Ph

OH

(533)

(534)

1080

Mieczysław Ziełinski´ and Marianna Kanska´

5. A brief review of isotope effect studies in physical, physical-chemical and analytical processes

Dynamics of cyclopentanone, existing in two equally populated forms and of cyclohexanone, existing in single forms, have been investigated643 by 13C NMR. The separation of 13C/12C isotopes caused by the magnetic isotope effect in the recombination of a radical pair with 13C in the carbonyl position in different-sized alkyl sulphate micelles, from sodium octyl sulphate (C8) through sodium dodecyl sulphate (C12), has been investigated644,645 and a conclusion has been reached that the behaviour of the radical pair depends on the micelle size645, on the penetrability of the micelle boundary, on the distance between the two electrons undergoing electron spin exchange interaction and on the viscosity of the micellar core, which in turn depends on the micellar size.

The microwave spectrum of the normal argon acetaldehyde and of the Ar CH3CDO van der Waals dimer has been used to determine their structure646 which was found to be a non-planar skew, with the Ar binding on top of the C C O triangle. The planar or nearly so structure of the Ar formic acid van der Waals dimer has also been determined647 from assigning the rotation spectrum of normal, Ar, DCOOH and HCOOH isotopomers.

The IR and Raman spectrum of liquid dicyanoacetylene has been reinvestigated648 including the isotopic species NC 13C C CN. Three new carbenes generated by pulsed flash pyrolysis have been identified by matrix- 13C IR spectroscopy649. The Isotope effect of H-bond stretching vibrations in the one-dimensional model approximation has been investigated650 and the dependence of the frequency of proton and deuteron stretching vibrations on the distance between equilibrium states of oxygen atoms determined. Rotational analysis of the high-resolution IR spectra of 4 and 5 bands of formyl chloride has been carried out providing the rotational assignment for the HCO35Cl and HCO37Cl isotopomers651. Far-infrared spectra and two-dimensional potential energy surfaces for the out-of-plane ring vibrations of undeuteriated cyclohexanone and its four isotopomers have been constructed652. Separation of 18O isotope has been observed in the IR multiple-photon decomposition (IRMPD) of perfluorodimethyl ether and of perfluoropropylene oxide under irradiation with TEACO2 laser653. A picosecond, kinetic investigation by optical absorption of protonation of deuteriated diphenylcarbene, Ph2C:,

with H2O, MeOH, EtOH and 2-propanol has been carried out by detecting654 the diphenyl-

C carbenium ion, Ph2 CH.

1,2-Divinylcyclopentene (DVCP-D0) and its terminally tetradeuteriated isotopomer (DVCP-D4), 535, have been studied655. Terminal deuteration prolongs the triplet life time, indicating that deactivation in DVCP occurs through vibration involving the terminal hydrogen atoms.

D D

D D

(535)

The IR spectra have been presented and the valence force constants provided656 for four RhI(CO)2 complexes containing Ph and CF3 substituted ˇ-aminovinylketonato ligands

17. Syntheses and uses of isotopically labelled compounds

1081

with various proportions of 13C. Molecular structure and IR spectra of formamide and its deuteriated species have been theoretically reproduced657. The IR and Raman vibrational spectra of solid ˛-chloroacetamides CH2CICONH2, CD2CICOND2 and CD2CICONH2 have been studied and interpreted658. Intensities of CHand CDstretching overtones in the gas phase vibrational overtone spectra of 1,3-butadiene- and 1,3-butadiene-D6 have been recorded and analysed, and the effects of vibrational coupling between CH oscillators noted659. Isotope effects in the Raman spectra of 13C-enriched C60 fullerene have been observed also660. Perdeuteriated polystyrene was found to have greater stability than normal polystyrene with respect to oxidation in air661, but the stability of perdeuteriated cis-polyacetylene with respect to oxidation in air was not better than that of normal cis-polyacetylene. The dynamics and structural rearrangement in the light and heavy water trimers has been studied by tunable far-IR laser spectroscopy662. The ground state rotational spectra of HNCS and its isotopomers have been analysed and their geometry determined663. The chemical behaviour of recoil atoms in the solid state, produced by irradiating metallocenes, their derivatives and their inclusion compounds containing Ru, have been studied664. A theoretical study of conformations and vibrational frequences of urea, thiourea, selenourea as well as of the corresponding deuteriated compounds has been carried out and the previous experimental IR spectra and their assignments critically examined665. The HOCO radical was detected in the gas phase by photoionization MS. The decay of hot radicals showed an apparent isotope effect (DOCO/HOCO), showing that the decay to H C CO2 is dominated by tunnelling666. Isotope induced symmetry lowering in C60 molecules activated several fundamental modes otherwise IR-inactive667. The isotope-dependent anomalous fine structure splitting has been observed668 in the 14-m bands of BF3 CO complexes and interpreted668. Natural and deuterium substituted polystyrene targets have been irradiated with energetic ion beams and the G-values for primary gas products, H2, CH4, C2H2, C3H4 and C6H6 and their various deuterium substituted forms, have been determined669. Very large isotope effects have been observed670 in the multiphoton ionization (MPI) and fragmentation process of benzene at 193 nm. The isotopically labelled complexes671 cis-[Rh(CO)2(PyO)(X)], 536 (X D Cl, Br, PyO, pyridine-N-oxide), containing 13CO and PyO-D5, have been synthesized and used to assign671 the internal ligand modes and the skeletal vibration in the IR spectra. The electronic spectra of 536 have also been recorded and analysed. IR spectra of aluminum[13C, 18O]carbonyl complexes, generated in argon matrixes by co-condensation of aluminum atoms and carbon monoxide, have been observed and analyzed672.

Nearly equal amounts of acetone and acetone-D6 have been obtained673 in the collisioninduced dissociation (CID) of M(M2CO)[(CD3)2CO]C , 537, for M D Al, Fe, Co and Cu. Nearly equal losses of the labelled and unlabelled acetones have been observed also in the IR multiphoton dissociation (IRMPD) of 537. This has been taken as evidence that both acetone ligands in 537 are bound in an equivalent fashion while IRMPD of the ion ScO(acetone)2C provides ScO(acetone)(CH2CO)C and the IRMPD of ScO[(CD3)2CO]2C besides ScO[(CD3)2CO](CD2CO)C yields also the product Sc[(CD3)2CO]C . Influence of isotopic labelling on chain dimension in polymer solutions of deuteriated polystyrene in cyclohexane has been reinvestigated by Schaefer674.

Changes in polystyrene and poly(methyl methacrylate) interactions with isotopic substitution have been observed675. Remarkable deuterium isotope effects observed in optoacoustic laser spectra of deuteriated organic vapours676 can be used to identify these compounds and to detect them also in air at a sub-ppm level. Vapour pressure and miscibility isotope effect studies in H-bonded systems have been reviewed677. The kinetics of the ligand exchange between tetrakis(acetylacetonato)cerium(IV), and

1082

Mieczysław Ziełinski´ and Marianna Kanska´

free acetylacetone (Hacac) in C6D6 and CD3CN, have been studied by 1H-NMR linebroadening678. kobs depends on the concentration of Hacac in the acid form, [Hacac]enol (equation 316):

1

D q C

r

316

kobs

[Hacac]enol

The deuterium isotope effect on the rate was relatively small. It has been proposed that the exchange proceeds through the formation of a nine-coordinate adduct complex Ce(acac)4Hacac followed by proton transfer from the coordinated Hacac to leaving acac and the ring opening of acac in the adduct complex. The above mechanism is probably valid for the liquid exchanges in other M(acac)4 complexes (M D Hf4C , Th4C and U4C ). The H/T equilibrium in the system t-butylammonium iodide dicyclohexano-18-crown-6- chloroform solution has been studied and the temperature dependence of the separation coefficient ˛H/T determined679.

The photochemically induced H/D and H/T isotope exchange between o- methylbenzophenone and labelled methanol proceeding through formation of reactive transient neutral photoenols was found to be catalysed by sodium carbonate. The hydrogen kinetic and solvent IE in this system has also been discussed680. H/D and H/T exchange in ortho-alkylphenyl ketones catalysed by excited semiconductors has been investigated681. The photocatalysed H/D and H/T exchange between o-methylbenzophenone, 538, o-methylacetophenone, 539, 5,8-dimethyll-˛-tetralone, 540 and MeO[2H], MeO[3H], i-PrO[3H] is taking place in the presence of suspensions of inorganic semiconductors, CdS, ZnO and TiO2. The amount of D and T incorporated into the ketone molecules was proportional to the irradiation time.

Me

O

Me

O

Me

O

 

 

Ph

 

Me

 

Me

(538)

(539)

(540)

The % yield of photocatalysed hydrogen isotope exchange was increasing strongly with the increase in of the number of molecules of ketone adsorbed on the semiconductor surface. The adsorption of 538, 539 and 540 on the surface of CdS, ZnO or TiO2 is a necessary condition for the exchange to occur. Electron scavengers, such as O2 and CBr4, added to the solvent increased the exchange yield, while addition of the hole scavenger 1,2,5-trimethoxybenzene retarded the photocatalysed reaction. The mechanism shown in equation 317 has been proposed to rationalize the above experimental findings.

The kD/kT KIE equals 2.27 (CdS), 1.84 (ZnO) and 2.07 (TiO2) for ketone 539 in labelled methanol indicated that H- transfer is involved in the RDS. No H/D exchange in CD3OH was observed. This excludes the participation of free radicals in the hydrogen exchange. The possibility of H/HŁ exchange in the four-centre complex 541 has not been included in the reaction scheme shown in equation 317.

According to equation 317, the incorporation of HŁ into 538 takes place in the last step following the neutralization. A mechanism of H/HŁ exchange involving hydroxy hydrogen

17. Syntheses and uses of isotopically labelled compounds

1083

radical cation is considered681 less likely than the one shown in equation 317.

R

R

R

O

O

OH

 

− e

 

CH3

CH3

CH2

 

radical cation

enol radical cation

 

 

 

 

 

ROH

R

+

O ROHH

CH2

radical-ion complex 682

R

+

O ROHH

CH2

H = D or T

R

e

O

+ ROH

CH2 H

(317)

R

+

O H

H OR

(541)

In the course of irradiation of acetophenone in the presence of 1-phenylethanol, the actual quantum yields for pinacol formation do not exceed 50%, but rise to 71% when PhCH(OD)Me is used for photoreduction of acetophenone in acetonitrile683,684. A conclusion has been reached from this inverse DIE that half the reaction of triplet acetophenone with 1-phenylethanol involves abstraction of an OH hydrogen followed by disproportionation of the initial radical pair back to reactants. A transfer of an O-bonded hydrogen to a triplet ketone is taking place (equation 318) besides the abstraction of hydrogen from

1084

Mieczysław Ziełinski´ and Marianna Kanska´

carbon by excited ketone (equation 319).

 

 

 

 

 

OH

 

3

 

 

 

 

OH

 

 

 

 

 

O

 

 

 

3 O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

R

+

Ph

Me

 

 

 

 

 

Ph

 

 

R

+

 

Ph

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(318)

 

OH

 

 

 

OH

 

 

 

 

 

 

 

 

 

HO

 

 

 

OH

 

 

 

 

 

 

 

+

 

>90%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

R

 

 

 

 

 

 

 

 

Ph

 

C

 

C

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

O

 

 

 

 

 

O

 

 

 

 

 

 

 

 

OH

 

 

 

 

h ν

 

 

,

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ar

R

 

 

kd

Ar

R

 

Ar

R

Ph

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(319)

 

OH

 

 

 

OH

 

 

 

 

 

HO

 

 

OH

 

 

 

 

 

 

 

 

Ar

R

+

Ph

Me

 

 

Ar

 

 

 

 

 

 

Ph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

Me

 

 

 

 

 

 

 

 

The chemical induced dynamic electron polarization in the acetone ketyl radicals, (CH3)2COH or (CD3)2COD, has been studied by Fourier transform-electron paramaqnetic resonance685 (FT - EPR). A new method for directly measuring secondary 18O and primary 13C isotope effects by running the reaction under high vacuum (10 5 torr) (when CO2 leaves the solution before significant exchange with the O atoms of water has taken place) was developed686, and applied to investigate the mechanism and TS structure of the enzymatic decarboxylation of oxalacetate. Variations in HPLC retention time Cs range between 3 7%, depending on the separation conditions and the number and position of the tritium substitution687. Isotope fractionation in several common derivatizations of organic compounds preceding their gas chromatographic-combustion isotope ratio MS analysis has been discussed688. A kinetic tracer method689,690 utilizing 13C-labelled exogenous substrates permitted one to compute690 the respective amounts of glucose and fructose ingested simultaneously that are oxidized during a prolonged exercise.

The NMR determinations of the site-specific hydrogen isotope ratios at natural deuterium abundance permitted one to assess primary and secondary thermodynamic fractionation factors in exchange reactions avoiding the synthesis of selectively labelled reagents and their degradations691.

Carbonyl water hydrogen bonding in the H2CO H2O complex and its deuteriumsubstituted isotopomers has been recently examined692.

17. Syntheses and uses of isotopically labelled compounds

1085

Partially deuteriated vinyl chloride has been used693 to elucidate its UV photodissociation dynamics. The hydrogen abstraction process by chlorine atom has been found to be the RDS in the reaction of normal and deuteriated alcohols with chlorine atoms generated by pulse radiolysis in CCl4 at 18 °C694.

Several protonated, fully deuteriated and partially deuteriated mixed-ligand complexes, [Os (LL)n(LL)0 )3 n]2C , [Rh(LL)n(LL0)3 n]2C (n D 0 3), [Pt (LL)2]2C , [Pt(LL0 )2]2C , doped into the single crystal of [Zn(bpy)3] (C104)2, where LL and LL0 represent the

bpy-H8 and bpy-D8 ligands as well as novel Eu3C chelate complexes containing deuteriated 4-(phenylethynyl)pyridine derivatives, 542, and other organic ligands, have been synthesized to investigate the effect of ligand deuteriation on the highly resolved emission spectra (at 1.5 K) of the above compounds695 705. The decay is strictly monoexponential for every compound. The lifetimes increase upon deuteriation. The emission spectra exhibit rich vibrational satellite structures connected with the electronic origins. In the case of perdeuteration, the electronic origin is blue-shifted. Energies of the vibrational modes are red-shifted. The partial deuteration vibrational modes between 400 cm 1 and 500 cm 1 allow to assign them to M L modes. The excitation maxima, decay times, quantum yields and luminescence yields of Eu(III) chelates have been determined702.

CD2 COO

CD2 N

CD2 COO

PhC C

N

CD2 COO

CD2 N

CD2 COO

(542)

VIII. ACKNOWLEDGEMENTS

The work of M. Z. on this chapter has been supported financially by grant DS/VI/WCh/24/95 provided by The Faculty of Chemistry of Jagiellonian University. The financial support by the Department of Chemistry of Warsaw University is acknowledged by M. K. also We both are much obliged to Dr R. Kanski´ for time-consuming typing of the manuscript of this chapter and for help in the course of collecting the literature data. M. Z. wishes to thank mgr. Halina Papiernik-Zielinska´ and A. Zielinska´ for encouragement and discussions in the course of nearly a year’s preparation of the manuscript and for final checking of the text and references. In the last steps of chapter corrections Gregory Czarmoth also participated.

IX. REFERENCES

1.F. L. Cook, C. W. Bowers and C. L. Liotta, J. Org. Chem., 39, 3416 (1974).

2.J. W. Zubrick, B. I. Dunbar and H. D. Durst, Tetrahedron Lett., 71 (1975).

3.B. Davis, J. Labelled Compd. Radiopharm., 24, 199 (1987).

4.S. R. Philips, D. A. Durden and A. A. Boulton, Can. J. Biochem., 52, 366 (1974).

5.S. R. Philips, D. A. Durden and A. A. Boulton, Can. J. Biochem., 52, 447 (1974).

6.G. Uray and C. Celotto, J. Labelled Compd. Radiopharm., 24, 1455 (1987).

7.G. Uray, I. Kriessmann and J. A. Zoltewicz, J. Org. Chem., 49, 5018 (1984).

8.P. Komanicky, R. F. Spark and J. C. Melby, J. Clin. Endocrinol. Metab., 47, 1042 (1978).

1086

Mieczysław Ziełinski´ and Marianna Kanska´

9.C. G. Beardwell, A. C. Hindley, P. M. Wilkinson, I. D. H. Todd, C. G. Riberio and D. E. Bulock, Canc. Chemother. Pharmacol., 10, 158 (1983).

10.D. Johnston and D. Elder, J. Labelled Compd. Radiopharm., 27, 9 (1989).

11.H. C. Neumann, G. O. Potts, W. T. Ryan and F. W. Stonner, J. Med. Chem., 13, 948 (1970).

12.M. Szirmai, M. M. Halldin, and A. Ohlsson, J. Labelled Compd. Radiopharm., 31, 131 (1992).

13.S. Agurell, M. M. Halldin and L. E. Hollister, in Biochemistry and Physiology of Substance Abuse (Ed. R. R. Watson), CRS Press, Boca Raton, FI, 1990, p. 137.

14.M. M. Halldin, S. Carlsson, S. L. Kanter, M. Widman and S. Agurell, Arzneim.-Forsch./Drug Res., 32, 764 (1982).

15.A. Ohlsson, J. E. Lindgren, K. Leander and S. Agurell, in Cannabinoid Assays in Humans (Ed. R. Willette), NIDA Research Monogr., National Institute on Drug Abuse, MD, 1976, p. 48.

16.E. J. Corey, N. W. Gilman and B. E. Ganem, J. Am. Chem. Soc., 90, 5616 (1968).

17.E. J. Corey and D. Crouse, J. Org. Chem., 33, 298 (1968).

18.T. Brenstrum, M. A. Brimble, C. J. Rush, G. J. Shaw and D. C. W. Reid, J. Labelled Compd. Radiopharm., 31, 629 (1992).

19.J. Flahaut and P. Miginiac, Helv. Chim. Acta, 61, 2275 (1978).

20.W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 43, 2923 (1978).

21.R. G. Berger, A. Kler and F. Drawert, Biochim. Biophys. Acta, 883, 523 (1986).

22.A. Hatanaka and T. Kajiwara, Naturforsch., 36b, 755 (1981).

23.S. Fielder and D. D. Rowan, J. Labelled Compd. Radiopharm., 34, 199 (1994).

24.N. N. Kalinina, V. T. Klimko, T. V. Protopopova and A. P. Skoldinov, Zh. Obshch. Khim., 32, 2146 (1962); Chem. Abstr., 58, 7825g (1963).

25.J. Hadgraft, D. G. Williams and G. Allen, in Pharmaceutical Skin Penetration Enhancement

(Eds. K. A. Walters and J. Hadgraft), Marcel Dekker, New York, 1993.

26.P. W. Groundwater, J. Hadgraft, J. E. Harrison and A. C. Watkinson, J. Labelled Compd. Radiopharm., 34, 1047 (1994).

27.B. Ongpipattanakul, R. R. Burnette, R. O. Potts and M. L. Francoeur, Farm. Res., 8, 350 (1991).

28.P. R. Street, PhD Thesis, University of Wales College of Cardiff, 1993.

29.A. Banerji and G. P. Kalena, J. Labelled Compd. Radiopharm., 25, 111 (1988).

30.A. Banerji and G. P. Kalena, Synth. Commun., 12, 225 (1982).

31.J. B. Stothers, Pure Appl. Chem., 53, 1241 (1981).

32.R. O. Adlof, J. Labelled Compd. Radiopharm., 24, 695 (1987).

33.R. O. Adlof and E. A. Emken, J. Labelled Compd. Radiopharm., 15, 97 (1978).

34.R. O. Adlof, W. E. Neff, E. A. Emken, and E. H. Pryde, J. Am. Oil Chem. Soc., 54, 414 (1997).

35.J. T. Kendall and T. A. Spencer, J. Labelled Compd. Radiopharm., 33, 1151 (1993).

36.E. Vedejs, Org. React., 22, 401 (1975).

37.S. G. Carmella and S. S. Hecht, Cancer Res., 47, 2626 (1987).

38.S. S. Hecht and D. Hoffmann, Carcinogenesis, 9, 875 (1988).

39.S. S. Hecht and D. Hoffmann, Cancer Surv., 8, 273 (1989).

40.J. M. Lin, S. Amin, S. E. Murphy, J. J. Solomon and S. S. Hecht, J. Labelled Compd. Radiopharm., 33, 285 (1993).

41. P. G. Foiles, S. A. Akerkar, S. G. Carmella, M. Kagan, G. D. Stoner, J. H. Resau and

S.S. Hecht, Chem. Res. Toxicol., 4, 364 (1991).

42.J. Vederas, Nat. Products Reports, 273 (1987).

43.V. J. Davisson, C. D. Poulter, A. B. Woodside, K. E. Stremler, T. R. Neal and M. Muehbacher,

J.Org. Chem., 51, 4768 (1986).

44.R. E. K. Winter and Z. Jian, J. Labelled Compd. Radiopharm., 31, 787 (1992).

45.H. Esterbauer, R. J. Schaur and H. Zollner, Free Radic. Biol. Med., 11, 81 (1991).

46.J. Emerit, J. M. Klein, A. Coutellier and F. Congy, Pathol.-Biol., 39, 316 (1991).

47.P. Allevi, M. Anastasia and P. Ciuffreda, J. Labelled Compd. Radiopharm., 34, 557 (1994).

48.H. Shibasaki, T. Furuta and Y. Kasuya, J. Labelled Compd. Radiopharm., 29, 1033 (1991).

49.N. Hirota, T. Furuta and Y. Kasuya, J. Chromatogr, 425, 237 (1988).

50.H. Shibasaki, T. Furuta, Y. Kasuya, T. Okabe, T. Katoh, T. Kogo and T. Hirayama, Biomed. Environ. Mass Spectrom., 19, 225 (1990).

51.T. Furuta, K. Kusano, and Y. Kasuya, J. Chromatogr., 525, 15 (1990).

52.WHO, Environ. Health Crit., 2, 9 (1976).

53.Japanese ‘Cabinet Order’ no 202 (1970).

54.M. Fukuoka, A. Tanaka and T. Nishimaki-Mogami, Appl. Radiat. Isot., 39, 391 (1988).

17. Syntheses and uses of isotopically labelled compounds

1087

55.H. Batiz-Hernandez and R. A. Bernheim, Prog. NMR Spectrosc., 3, 63 (1967).

56.N. A. Awan, A. N. DeMaria and D. T. Mason, Drugs, 23, 235 (1982).

57.R. E. Kates, Drugs, 25, 113 (1983).

58.L. J. Theodore and W. L. Nelson, J. Labelled Compd. Radiopharm., 27, 491 (1989).

59.S. N. Lodwig and C. J. Unkefer, J. Labelled Compd. Radiopharm., 31, 95 (1992) and references cited there.

60.D. S. Wishart, B. D. Sykes and F. M. Richards, J. Labelled Compd. Radiopharm., 31, 1019 (1992).

61.G. Ehrensvard and R. Stjernholm, Acta Chim. Scand., 3, 971 (1949).

62.K. Kurumaya, T. Okazaki, N. Seido, Y. Akasaka, Y. Kawajiri and M. Kajiwara, J. Labelled Compd. Radiopharm., 27, 217 (1989).

63.P. M. Anderson and R. J. Desnic, J. Biol. Chem., 254, 6924 (1979).

L

64. J. Smejkal, V. HanusL, I. Linhart and T. Elbert J. Labelled Compd. Radiopharm., 28, 757 (1990). 65. P. L. Stotter and K. A. Hill, Tetrahedron Lett., 4067 (1972).

66. F. TurecLek, J. Labelled Compd. Radiopharm., 24, 73 (1987).

67. V. P. Rao, J. F. Wang, N. J. Turro and C. Doubleday Jr., J. Labelled Compd. Radiopharm., 28, 193 (1990).

68. C. E. Sacks and P. L. Fuchs, J. Am. Chem. Soc., 97, 7372 (1975).

69. X. Lei, M. Zimmit, C. Doubleday and N. J. Turro, Tetrahedron Lett., 27, 4671 (1986). 70. L. J. Johnston and J. C. Scaiano, Chem. Rev., 89, 521 (1989).

71. C. Doubleday, N. J. Turro and J. F. Wang, Acc. Chem. Res., 22, 199 (1989). 72. D. Tsamboas and C. E. Orfanos, Pharmacol. Ther., 14, 355 (1981).

73. J. S. Bertram, L. N. Kolonel, and F. L. Meyskens Jr., Cancer Res., 47, 3012 (1987).

74. R. W. Curley Jr., M. A. Blust, and K. A. Humphries, J. Labelled Compd. Radiopharm., 29, 1331 (1991).

75. J. M. Colacino, D. C. DeLong, J. R. Nelson, W. A. Spitzer, J. Tang, F. Victor and C. Y. E. Wu,

Antimicrob. Agents Chemother., 34, 2156 (1990).

76. W. J. Wheeler and W. B. Blanchard, J. Labelled Compd. Radiopharm., 31, 495 (1992). 77. A. Blocher and K. P. Zeller, J. Labelled Compd. Radiopharm., 31, 807 (1992).

78. G. M. Caballero and E. G. Gros, J. Labelled Compd. Radiopharm., 33, 907 (1993).

79. M. Mohammadi, G. W. Kabalka and R. D. Finn, J. Labelled Compd. Radiopharm., 24, 317 (1987).

80. G. W. Kabalka, E. E. Gooch and K. A. R. Sastry, J. Nucl. Med., 22, 908 (1981).

81. G. W. Kabalka, M. Muhammadi, S. A. Kunda and R. D. Finn, Org. Prep. Proc. Int., 17, 17 (1985).

82. R. E. Pickering, M. A. Wysocki, E. J. Eisenbraun, R. J. Pell, H. L. Gearhart and M. C. Hamming, J. Labelled Compd. Radiopharm., 24, 919 (1987).

83. S. V. Panvelker, W. Ge, Y. T. Shah and D. C. Cronauer, Ing. Eng. Chem. Fundam., 23, 202 (1984).

84. R. E. Pickering, D. L. Bymaster and E. J. Eisenbraun, J. Labelled Compd. Radiopharm., 22, 1149 (1985).

85. E. D. Sturrock, J. R. Bull and R. E. Kirsch, J. Labelled Compd. Radiopharm., 34, 263 (1994). 86. K. M. Smith and R. K. Pandey, Tetrahedron, 40, 1749 (1984).

87. D. Krois, Monatsh. Chem., 122, 495 (1991).

88. A. Gossauer, F. Nydegger, E. Benedikt and H. Kost,¨ Helv. Chim. Acta, 72, 518 (1989). 89. R. Wilmes and M. Winnewisser, J. Labelled Compd. Radiopharm., 31, 1037 (1992).

90. V. G. Kunde, A. C. Aikin, R. A. Hanel, D. E. Jennings, W. C. Maguire and R. E. Samuelson, Nature, 292, 686 (1989).

91. P. Botschwina and P. Seebald, Chem. Phys., 141, 311 (1989). 92. P. Botschwina, Chem. Phys., 81, 73 (1983).

93. P. Botschwina and J. Flugge, Chem. Phys. Lett., 180, 589 (1991).

94. T. Furuta, M. Katayama, H. Shibasaki and Y. Kasuya, J. Labelled Compd. Radiopharm., 31, 437 (1992).

95. T. Furuta, H. Takahashi and Y. Kasuya, J. Am. Chem. Soc., 112, 3633 (1990).

96. T. Furuta, Y. Kasuya. H. Takahashi and S. Baba, J. Chem. Res. Synop., 86 (1987). 97. T. Furuta and Y. Kasuya, Biomed. Environ. Mass. Spectrom., 16, 313 (1988).

98. I. Matsuda, K. Matsuo, F. Endo, I. Uehara, N. Nagata, Y. Jinno, S. Chikazawa, T. Miyakita and H. Miura, Clin. Chim. Acta, 119, 319 (1982).

1088

Mieczysław Ziełinski´ and Marianna Kanska´

99.K. R. Hanson and E. A. Havir, in The Enzymic Elimination of Ammonia in The Enzymes, (Ed. P. D. Boyer), Vol. 7, Academic Press, New York, 1972 p. 75.

100.S. Sawada, A. Tanaka, Y. Inouye, T. Hirasawa and K. Soda, Biochim. Biophys. Acta, 350, 354 (1974).

101.A. Peterkofsky, J. Biol. Chem., 237, 787 (1962).

102.C. B. Klee, K. L. Kirk and L. A. Cohen, Biochem. Biophys. Res. Commun., 87, 343 (1979).

103.A. Fry, in Isotope Effects in Chemical Reactions Eds. C. J. Collins and N. S. Bowman, ACS Monograph, Van Nostrand Reinhold New York, Cincinnati, Toronto, London, Melbourne, 1972 pp. 387 392.

104.J. H. Glans and G. R. Hatfield, J. Labelled Compd. Radiopharm., 27, 140 (1989).

105.T. W. Whaley, G. H. Daub, V. N. Kerr, T. A. Lyle and E. S. Olson, J. Labelled Compd., 16, 809 (1979).

106.H. Bertagnolli, P. Chieux and M. D. Zeidler, Mol. Phys., 32, 1731 (1976).

107.U. Anthoni and P. H. Nielsen, J. Labelled Compd. Radiopharm., 21, 375 (1983).

108.D. R. Morgan and H. C. Dorn, J. Labelled Compd. Radiopharm., 29, 777 (1991).

109.P. Vayer, D. Dessort, J. J. Bourguignon, C. G. Wermuth, P. Mandel, and M. J. Maitre, Biochem. Pharmacol., 34, 2401 (1985).

110.J. Benavides, J. F. Rumigny, J. J. Bourguignon, C. G. Wermuth, P. Mandel and M. J. Maitre, Neurochem., 38, 1570 (1982).

111.M. Schmitt, J. J. Bourguignon, C. G. Wermuth, D. Schott, B. Rousseau and J. P. Beaucourt, J. Labelled Compd. Radiopharm., 27, 23 (1989).

112.G. A. R. Johnston and R. D. Allan, Neuropharmacology, 23, 831 (1984).

113.D. R. Hill and N. G. Bowery, Nature, 290, 149 (1981).

114. R. K. Duke, R. D. Allan, C. A. Drew, G. A. R. Johnston, K. N. Mewett, M. A. Long and

C.Than, J. Labelled Compd. Radiopharm., 33, 527 (1993).

115.H. Wiegandt, Glycolipids, Elsevier, Amsterdam, 1984.

116.R. Birk, G. Brenner-Weiˇ, A. Giannis, K. Sandhoff and R. R. Schmidt, J. Labelled Compd. Radiopharm., 29, 289 (1991).

117.Y. Nishizuka, Science, 233, 305 (1986).

118.R. M. Bell, Cell, 45, 631 (1986).

119.T. Toyokuni, M. Nisar, B. Dean and S. Hakomori, J. Labelled Compd. Radiopharm., 29, 567 (1991).

120.Y. Igarashi, K. Kitamura, T. Toyokuni, B. Dean, B. Fenderson, T. Ogawa and S. Hakomori, J. Biol. Chem., 265, 5385 (1990).

121.L. S. Kaminsky, Drug Metab. Rev., 20, 479 (1989).

122.R. S. Obach and L. S. Kaminsky, J. Labelled Compd. Radiopharm., 31, 763 (1992).

123.K. Naumann, Synthetic pyrethroid insecticides, in Chemistry of Plant Protection, Vol. 5 (Eds.

G.Haug and H. Hoffmann), Springer-Verlag Berlin, Heiderberg, New York, 1990.

124.U. Pleiˇ, J. Romer¨ and R. Thomas, J. Labelled Compd. Radiopharm., 33, 949 (1993).

125.C. R. Pace-Asciak, E. Granstrom and B. Samuelsson, J. Biol. Chem., 258, 6835 (1983).

126.J. R. Pace-Asciak and J. M. Martin, Prostaglandins Leukotriens Med., 16, 173 (1984).

127.O. Laneuville, R. Couture and C. R. Pace-Asciak, Br. J. Pharmacol., 105, 297 (1992).

128.P. M. Demin, K. K. Pivnitsky, L. L. Vasiljeva and C. R. Pace-Asciak, J. Labelled Compd. Radiopharm., 34, 221 (1994).

129.V. Farina, Tetrahedron Lett., 30, 6645 (1989).

130.B. Latli, L. J. Greenfield and J. E. Casida, J. Labelled Compd. Radiopharm., 33, 613 (1993).

131.D. B. Sattelle and D. Yamamoto, Adv. Insect Physiol., 20, 147 (1988).

132.K. Naumann, Synthetic Pyrethroid Insectides; Structures and Properties Springer-Verlag, New York, 1990, p. 13.

133.S. Duty and A. H. Weston, Drugs, 40, 785 (1990).

134.U. Pleiˇ, J. B. Lenfers and P. Schmitt, J. Labelled Compd. Radiopharm., 33, 681 (1993).

135.W. M. Pearlman, Tetrahedron Lett., 17 1663 (1967).

136.H. Ali, S. B. Christensen, J. C. Foreman, F. L. Pearce, W. Piotrowski and O. Thastrup, Br. J. Pharmacol., 85, 705 (1985).

137.O. Thastrup, Agents Actions, 29, 8 (1990).

138.A. Andersen, A. Lauridsen and S. B. Christensen, J. Labelled Compd. Radiopharm., 31, 199 (1992).

139.J. B. A. Thijssen, A. G. Knaeps, W. L. M. Verluyten, J. J. P. Heykants and C. G. M. Janssen, J. Labelled Compd. Radiopharm., 24, 779 (1987).

Соседние файлы в папке Patai S., Rappoport Z. 1997 The chemistry of functional groups. The chemistry of double-bonded functional groups