Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Science and Engineering of Droplets - Fundamentals and Appli.pdf
Скачиваний:
444
Добавлен:
15.08.2013
Размер:
16 Mб
Скачать

Droplet Generation 65

2.2.0ATOMIZATION OF MELTS

Atomization of melts has, in principle, some similarity to the atomization of normal liquids. The atomization processes originally developed for normal liquids, such as swirl jet atomization, two-fluid atomization, centrifugal atomization, effervescent atomization, ultrasonic piezoelectric vibratory atomization, and Hartmann-whistle acoustic atomization, have been deployed, modified, and/or further developed for the atomization of melts. However, water atomization used for melts is not a viable technique for normal liquids. Nevertheless, useful information and insights derived from the atomization of normal liquids, such as the fundamental knowledge of design and performance of atomizers, can be applied to the atomization of melts.

Atomization of melts has many applications and advantages for the production of powders and components compared to conventional techniques. Research and applications of atomization of melts have a fairly short history. Very little work had been done on this subject before the twentieth century. The main obstacle in the development of atomization of melts was a lack of suitable materials and techniques for handling molten metals. Over the past decades, atomization of melts has become the dominant mode for powder production due to its attractive features. First, high powder production rates make the technology viable and competent economically. Second, for certain atomization methods, it is possible to control powder size, size distribution, shape and surface morphology. Third, atomization offers a high degree of flexibility in alloying and control over impurity levels. Presently, it is the only viable fabrication technology for highly alloyed specialty alloy powders. The atomized powders are prealloyed and exhibit composition homogeneity. In addition, the production capacity may range from hundreds of grams to tonnage quantities. By the early 1980’s, over 60% by weight of all the powders produced in North America were manufactured by atomization.[4] It was estimated that the worldwide atomization capacity is approaching 106 metric tons per year.

66 Science and Engineering of Droplets

Atomization of melts has also been used in advanced materials processing and synthesis of net or near-net shape components without the formation of powders. Thermal spray, plasma spray deposition,[43] spray atomization deposition,[3] centrifugal spray deposition, and spray co-injection deposition are some examples of this category of applications. In thermal spray processes, a solid material in the form of powder, fiber or wire is directed into a plasma or combustion flame where it is rapidly molten into a spray of droplets and accelerated to a high velocity towards a target substrate to form a surface coating or a free-standing component. The powder feed is usually obtained from atomization of melts. Spray atomization deposition generally refers to a material synthesis approach that involves the energetic disintegration of a molten material by high-speed gas jets into micro-sized droplets, followed by the immediate deposition of solidified, semi-solid, and liquid droplets on a substrate to form a coherent, near fully dense material of desired shape. This process has also been termed spray casting, spray rolling, or spray forming, depending on whether or what post-processing steps follow the deposition. Various shapes, such as disk, tube, strip, and sheet, can be deposited by manipulating the substrate and/or changing the atomizer parameters. Refined microstructure and improved physical/mechanical properties can be achieved as a result of rapid solidification. Therefore, spray atomization deposition has attracted considerable attention as a viable processing alternative for structural materials over the past two decades.

Numerous atomization techniques have evolved for the production of metal/alloy powders or as a step in spray forming processes. Atomization of melts may be achieved by a variety of means such as aerodynamic, hydrodynamic, mechanical, ultrasonic, electrostatic, electromagnetic, or pressure effect, or a combination of some of these effects. Some of the atomization techniques have been extensively developed and applied to commercial productions, including (a) two-fluid atomization using gas, water, or oil (i.e., gas atomization, water atomization, oil atomization), (b) vacuum atomization, and (c) rotating electrode atomization. Two-fluid atomization

Droplet Generation 67

has been the predominant technology and accounts for over 95% of the atomization capacity worldwide.[4] Some other atomization techniques have been evaluated in laboratory and pilot scale operations and may be considered as near-commercial methods, such as (a) ultrasonic gas atomization, (b) rotating disk atomization, (c) electron beam rotating disk atomization, and (d) roller atomization. A number of other atomization techniques do not appear to have established significant commercial applications but are of high scientific interest. These include, for example, (a) centrifugal shot casting atomization, (b) centrifugal impact atomization, (c) spinning cup atomization, (d) laser spin atomization, (e) Durarc® process, (f) vibrating electrode atomization, (g) ultrasonic atomization, (h) steam atomization, (i) electromagnetic and electrostatic atomization, and (j) impaction and pressure atomization. These methods demonstrate engineering innovation and may be used to produce high quality powders of a variety of advanced specialty materials. Some of them may be commercialized in the near future. The development of these techniques has not only advanced atomization technology in general but also improved our fundamental understanding of atomization mechanisms. As the need for advanced powder and particulate materials increases, more elaborate atomization techniques will be required.

Similar to the atomization of normal liquids, the basic requirements for atomization quality are a small droplet size and a narrow size distribution. In the atomization of melts, relatively fine droplets can be obtained using some techniques and, as a result, high cooling rates, ranging from 102 to 106 °C/s, can be achieved which allow the control of powder microstructure to a fine degree. Cooling rates of 105 to 106 °C/s are readily attainable in substrate quenching of fine liquid droplets using rotating discs, high speed rolls, or other metallic substrate systems. However, many atomization techniques are incapable of producing a narrow size distribution, i.e., the yields of useful powders are low, thus the production costs are high. Therefore, the requirement of a narrow size distribution is very important to reducing the costs, particularly of high alloy materials, and to reproducing microstructures of powders.

68 Science and Engineering of Droplets

In addition to the difference in the size distributions of droplets/particles produced, the overall production costs are apparently the point of differentiation among all atomization techniques under consideration. As the criteria for the evaluation of a specific atomization technique/system, the following factors are of importance: high yields, minimum use of expensive gases, clean droplets/ particles, and high throughput.

In spite of the differences among the various atomization techniques for metallic melts, there are some features in common. First, the metal to be atomized is generally molten by high-frequency induction or resistance heating, fuel firing, or arc melting in a crucible (tundish). Melting equipment and procedures are similar. For reactive metals, induction melting is conducted in vacuum. With rare exceptions, the liquid metal is delivered through a refractory or ceramic nozzle. Refractory-free, clean melting systems used in casting processes (for example, electroslag refining system) may be employed for metal melting in atomization to reduce ceramic inclusions and defects. In the electroslag refining system (ERS), the liquid metal is transferred directly from the ERS pool to the atomization system via a ceramic-free copper funnel, i.e., a cold-walled induction guide. Second, in contrast to the atomization of normal liquids, the cooling of liquid metals occurs simultaneously during the atomization of melts, leading to an increase in liquid viscosity and surface tension and eventual solidification of atomized droplets. One of the issues to be considered in the atomizer design is therefore the possible blockage of the pouring system due to solidification and/or buildup of the liquid metal at the metal delivery nozzle tip caused by inappropriate flow pattern (typically recirculation flow) and rapid cooling. Cooling and solidification also affect critically the resultant droplet size distribution and determine, to a large extent, the droplet shape. Third, some post-processing and treatment systems for some atomization techniques may be similar. A comparison of the features of various atomization techniques is given in Tables 2.3, 2.4 and 2.5.

Droplet Generotion

69

~

~

~

"Q)

~

I..

tS

~

G)

g.

.fj

G)

~

5

~

s

~

'-ca

~

~

u c,0

~

G)

~

G)

~

c,0

~

0

~

.~

p.

§

u

.

~

N

~

-

~

~

§

.~

.8

~

..

f

>

~

<

";;'

.-E- o

tU

O

~

.-

tU

~

C)6

l--a:

.-= .- bOE ='Cb

e~

.~-=

01)

=---

 

"'

o=u

o

o ~

u

'-

;.., 0

~

~

~e

-:1. 0,,-,

o

O.~

"'

~

0

~

~

~~,..::

0

 

..t1J

W"OC

 

 

 

 

 

~~

 

.~

 

.9

 

~

~~

 

 

 

.2

..JO

 

;>,C

.-"'

 

 

~

 

.-0

 

 

 

 

 

~

 

a

..2:'.~

...J

 

 

u

 

 

 

 

~..J

 

 

 

 

 

 

 

-bJ)

 

 

 

 

-ou

 

 

 

 

O

 

 

g.~

.. --"~

 

 

J

 

 

 

~

 

 

 

 

 

 

 

 

u

 

o-.."w

 

.e

~

-oe

 

 

",OE>ta

 

.+: Q

~

 

';e

h

G

iE '

 

.-u"'

.-

 

 

 

 

 

 

 

 

 

..-c

 

 

 

 

 

 

 

 

 

~==

 

B~~

 

 

 

..:

 

=

E

.~

[Q

e

~

 

 

 

...o-w

 

.~ .-.r:

 

I:

c

.-

 

 

~0~..

 

 

 

~

 

-8 =

 

Q."Q~

 

,..0'0

 

 

 

 

bJ)i5

 

.g~~c.

 

 

 

~

 

~~

 

u ..

 

.-"

 

..

~~>~~:I:

 

o

 

 

 

 

 

~~

 

~

 

0

 

~

 

 

 

 

 

 

 

 

 

 

 

.:I:->

 

 

 

Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

 

 

."0

 

Q)

 

 

 

.-

 

~

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.n

 

 

 

 

~,

 

 

..

 

c

 

 

 

 

Q~

 

'EiI

-y-

 

Q)

--~

.~

 

 

 

Q)

-OS

DO

 

 

 

.a

 

 

"Q

 

"'

.n

.~

.n

-Q)

~

..;

;..,

e

t;

o

 

 

QJ~

 

.-

 

.~

.n

"0

 

-..

 

 

DO(.)

 

"~

 

-.."'

 

 

;>(6."..C

 

 

 

 

 

 

 

 

 

 

 

O

 

=

o

 

~-..

 

 

 

 

~~~;:=~.0=

 

 

 

 

 

.-C

 

"'

 

00-

 

 

.~.2

 

>.

 

 

 

 

 

e

:I:

.!!

"0

u

 

 

 

 

"'=.~0=~o

.n

~

 

Q,.~

 

 

.-.0

 

 

-a-,,-~

 

 

 

.~

 

Q,-

 

 

 

 

 

 

 

 

 

..-5

 

.-

~ .-QJ

,.,

 

 

 

 

 

 

 

 

 

"'

"

(.)

>

~

 

 

 

"

 

 

 

 

 

 

 

 

 

 

"g

 

 

 

 

.-"

 

 

i

;> -

t-s~~~8'Q

 

 

 

 

 

 

f]trj

 

.cO

 

 

~o~

 

 

..-"'

 

 

.-

 

 

 

 

 

 

 

 

 

 

 

 

QJ...

 

 

-

.=oQ):aJ:3"'=

.n

 

<

-g

~U~

U

bO~

~

 

Q.°c

E

 

.c

 

0

Q..!

 

~

 

o

O

.~

 

.-"Q,

 

{/)

 

 

 

 

 

e

 

~

 

 

 

..

"'

O

 

":E

 

o

 

 

",

 

Q.o

 

 

 

QJ

 

 

 

 

 

 

 

 

--'1

 

 

 

 

 

 

 

 

.n

 

~

 

 

 

Q,

 

..

 

 

 

 

 

 

 

V)e

 

"'

 

~

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

""

Q.

 

-.,.,..."'

>

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q,"-

 

..I

~

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.-D

 

 

~"!"'.9.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

]"",01")

 

 

 

 

~

 

 

 

~

 

 

 

 

 

~

 

 

 

 

1;;-"1"

 

"10~'a

~

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...<0

 

0.:..=

 

 

 

Q

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

~

"1".

1

'OeCUI---a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{I)

N

 

~~~~

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

0

~

"'0

i'

~

."

E::

.-g

 

 

 

 

5°.~..

 

...

.;

 

.u

u

-~

,!!)

la

 

..."a

 

~

..-9

.-

.=

 

..bO

..bO

1!.

e

~

~~N.-"'Z

=

"'

 

.N

 

 

~

.-

 

,

---O

 

 

 

.,

-a-::i,~.".~~<~

 

 

 

 

...M..~-."...

..§ "a

~

e

~

~

.!. ~

e

 

.U

,..,~

~=a

1!.

..;'('90."."a..~

 

 

 

..""-'

 

~,"a..UC.

 

 

 

-

]"'

.,B..~

 

 

 

°

 

 

~~."c."'

~

 

 

~..NO

 

 

 

 

 

 

S

..J

 

 

 

 

"EI~="O...0\;0~~"Q.~

-5"0

 

 

~..on

J

-.-"'=N0

 

.-

 

~

 

=

 

 

rno

 

 

~~C.)e

 

 

 

°

 

.--tII)

 

=

 

'

o

O ~V.-~.-"'~

 

'B

o

"!

'i't~

 

 

..u

 

 

O"0N

 

Q.

 

 

',",

c o

.~ N

.a

~

[3

"

 

~

laV\..-;

.-

--la

=.J.UO.:

..50.:

~

<N..Jt)

~

\00

i

"ot"~

.;.,j

 

 

~;...

 

 

-0

 

 

"'-

 

 

;..."a

 

 

o

 

"'

-0

 

"aU-

 

-..

-

 

C

z

-

.-"'

 

.c

0

 

Q.:1!. O b!)...C

.= :!. la

~"'u

.."' e ~

~]

O \U

---'1~

0

M

V

~c

O

.g

u

~

.-cN .-

~

6

.E~

::J

 

 

o

 

 

 

 

o

 

 

 

 

'\'ii

 

'Qo

 

 

 

 

7

 

 

..,.~

 

 

"'

"'.

 

 

"' ...

 

 

..o

 

 

 

c=

 

.u

"'

.~

 

~:Zs

 

 

 

" ...

 

 

"'

"'

 

 

0

 

.."' e

 

-.9

"'

=

0

'a

 

=

 

-.-

u

 

 

0

 

u

 

o

~

 

=

"E--~

 

 

"

 

 

u.!!!

 

 

 

 

" ..

 

 

~...9

"'

 

 

"0 I

~~

"0-

~=~

~ O .

~.-N

=

O .- 0 >

-U

1"0

=

0

~ .~

1U .~

~e o

~

on

~

/\

""0 I

~

co

=

.5

"

a1

"'"

-"' ,,-

""

~,g

-0 "'

"

0.

"'

~

~

 

=

'g

.g

0

=

...~ CD .-

o~

1- .-

0:!...' II") ~

.~

=

0

.~

~

N

.e

~

n

o o

j'

...,

NO

7

..

~

"

u

<

.".",

>.>. o o

~:a

..

~

~

o u

z

~

~.g

O =

...00 ~.-

o~

.,.. .-

6~

..r N

.;;

~

e .2

=1U = N

(.) .- = e

;>B

~

 

 

o

 

 

 

 

i

 

 

 

 

~

 

 

 

 

 

VI

 

..-=

o

 

 

u

 

 

 

 

o .0

 

 

8

 

 

~

 

 

c~

o

 

 

N

 

 

 

 

 

-..J

 

 

-"'

 

--

 

<

 

 

 

 

 

-~"

 

 

8.9~

 

 

 

"

-=

 

 

 

.-

 

 

~z

 

 

 

8

 

..-

 

~~

 

 

 

-oM

I

 

 

 

 

 

to-.;

 

 

 

-0 ..

 

 

!

 

 

=."

 

 

 

 

 

O

 

.

 

 

.--

 

 

ri1~

 

 

 

0.-

 

 

 

 

't.g

 

 

 

 

 

 

 

=---

 

 

 

uo~

.~

~

bO"0

.=

 

0

 

~

~

i

 

~

 

.~

~

'0

 

 

U

e

~.

~!iJg~ <

~~

70 Science and ~--Bineering of Droplets

l:!-n5

~

~

'-UJ

~

Q)

~

~

tS

{/}

Q)

~

0"'

]

(.)

Q) t-;

~

0

~

e o

<

-

cU

~

Q)

~

u I

~

Q)

Z

~

0

{/}

Q)

.a

(\S

Q)

~

~

0

§

{/}

.~

S- o

U

~

N -~

"Q

=

~

§

 

.~

 

.e

 

:.:j

 

~

 

'i

 

;>

 

-0

 

<

 

cQ

,-

Q ~

"'

tUQ)~

 

§-~~

 

u'-'

 

~

Q.'C

..c: .-

~~

e~

~'-'

~

bOU

~ 0

.~ '-' '0 U

8~

>-

.9

~

I

~

~---

'6 §.

"Q.,-, 0

...

C)

"8

~

~

~-"'-

 

,...,

 

~

 

 

 

 

O

.0

~

.

 

 

..9;"",6.

 

-a",-""-

 

a

 

"'

-t'

.f;' ~

~~~o

 

-~~

00

(U .-

'-' Q) C,).-;. Q) .-='C,)

='

>

~

=

"'

~

.+; (U 0

Q)

8

~

.~

g.

9

~

o.~

§".s

.E

 

p

-(J~

 

 

 

 

 

 

 

 

 

 

 

~

 

 

u

 

~

 

 

 

~

 

-.~

u

a

~

 

-a

 

 

 

 

u

 

 

0

 

:2

 

 

~¥J

 

u-s

~

 

"'

.~

~

 

 

 

5

 

 

 

 

 

~

-a-ou~

.-o

 

 

:S=.d 01

 

.?;-~

 

c

5

 

 

 

 

Q) ...

.~ ~

~

 

!a

~

:E

 

~~

 

 

~

0-

 

 

.~

 

 

0

='

U

0.

Z

-.-0

 

 

 

 

.d

 

 

 

 

 

 

 

~[

 

0.

 

 

 

 

 

 

 

~

 

 

 

rn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0-

 

 

 

 

I/"\

 

 

 

 

 

~I

 

 

 

 

9

 

 

 

 

 

 

00

 

 

 

 

~

 

 

'1

 

 

'j

 

 

 

 

 

 

 

 

 

 

 

 

"i'

 

 

 

 

"'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

>-

 

 

t--o

 

 

 

 

 

 

 

 

u

 

 

 

-

 

 

 

 

 

...'0

 

.~

~

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

-

 

 

~

0

 

~

 

 

 

 

 

 

"

 

 

--

 

 

 

 

 

 

 

 

 

 

 

 

~

 

"'..u

 

O

 

 

"0

 

.-a

"'~

Q

 

 

 

>.

~

 

 

..-

 

 

 

 

<

 

 

 

 

 

>

u

='

 

 

O~"'U

 

 

 

 

 

I...

"'

 

 

 

-~.-

 

.""'-

 

£

!3 "'

.-

;:3'",

.""

 

.-

"'

.-0

 

 

...~-C/)

.~

 

 

.

 

~u~E--

 

Uu

 

u

 

 

 

 

~

 

 

P.u-",

 

 

 

 

'lJ .~ :a

..g

 

"'= -

 

 

 

 

 

 

 

 

 

 

=00

 

 

 

 

u

 

u

~g~

 

 

00

 

I

 

.U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z<

 

 

 

 

C/)

 

 

~ a

 

-5!.

 

 

 

 

 

 

 

 

~

 

c

 

 

 

 

]

 

.~'::!

 

o

 

o

 

O

 

 

 

 

~

u

 

00

 

O

-0

 

~

 

I

 

 

 

 

'-0

 

 

 

 

 

 

z

.~

.c

 

 

 

!

B

 

>

to .

 

 

"'

.-

 

~

 

 

 

 

u-

 

 

0

 

~

 

 

 

 

 

 

 

 

 

~

 

 

 

 

 

 

0

 

.-

 

 

 

00-0

 

 

 

 

 

 

 

 

 

 

r-.

 

-0

 

 

 

 

 

 

 

 

 

v

 

 

 

 

 

~

 

Q

 

 

 

 

~

 

 

 

=

.~

 

 

 

 

 

 

 

 

 

O

 

.5!

 

 

=

 

.~

§

 

 

0

 

 

 

 

 

 

t3ab/)~O0O

 

 

~.~

 

oo1S2'

 

~

G) =

.-~

 

 

.5

 

.-00

 

 

 

S§e,

 

 

 

&1

~

"E

§

ffi

~

.s

 

 

 

 

 

 

 

 

 

~

~<

 

 

 

 

 

 

~<--

 

 

 

 

 

 

 

 

 

 

 

""'~

Droplet Generation 71

Table 2.5. Comparison of Features of Other Atomization Methods for Melts[4][5]

 

Droplet

 

Cooling

Through-

Capacity

 

 

Method

Size

Metal/Alloy

Rate

put

(Metric

Advantage

Limitation

 

(mm)

 

(°C/s)

(kg/min)

Tons)

 

 

Centrifugal

150–1000

Fe, Co, Ni,

 

 

 

 

Narrow

Coarse

Ti alloys,

 

 

 

 

Shot Casting

Standard

2

5

£1

 

size

Alumina,

particles,

Atomization

deviation:

10

-10

 

distribution

Uranium

 

 

 

 

Low EE

(CSC)

1.3–1.4

 

 

 

 

 

monocarbide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si,Stainless

 

 

 

 

 

 

Centrifugal

 

steels,Ni,

 

 

 

 

Fine

 

 

Cu,

 

 

 

0.5–0.9

 

 

 

 

 

particles,

 

Impact

10–1000

Fe81.5B14.5S

 

 

0.5–0.9

Low volume

 

 

´10-3

Rapid

Atomization

 

i3C1,

 

 

 

 

quenching

 

 

 

Raney® type

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

alloys

 

 

 

 

 

 

 

 

Sn, Pb, Al,

 

 

 

 

Fine, clean,

 

 

 

 

 

 

 

spherical

 

Spinning

<10–300

Cu, Zn

 

 

 

 

Relatively

 

 

 

 

particles,

alloys,

 

 

 

 

Cup

Standard

5

6

 

0.5–1.4´

Narrow

low volume

 

 

Atomization

deviation:

Stainless and

10

-10

10-3

size

&

(RSC)

1.5–1.7

High speed

 

 

 

 

distribution

productivity

tool steels,

 

 

 

 

 

 

 

 

 

 

Small

 

 

 

Superalloys

 

 

 

 

 

 

 

 

 

 

 

facility

 

 

 

 

 

 

 

 

 

Laser

 

 

 

 

 

 

Spherical,

Low volume

 

Ni-Al-Mo,

~105

 

 

homogeneo

&

Spin

~100

us,

productivity,

Ti-6Al-4V

Atomization

 

 

 

 

 

clean

Poor EE,

 

 

 

 

 

 

 

 

 

 

 

 

 

particles

Cost

 

 

 

 

 

 

 

Spherical,

 

 

 

 

 

 

 

 

clean

 

Durarc®

³250

Ti and Zr

particles,

Low volume

Process

alloys

Less

 

 

 

 

 

limitation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on starting

 

 

 

 

 

 

 

 

materials

 

Vibrating

 

Mild steel,

 

 

 

 

Spherical,

Low volume

Electrode

300–500

Cr-Ni steel,

 

 

 

 

high-purity

~0.2

&

Atomization

 

Cu-Ni alloy,

particles,

 

 

 

 

 

productivity

(VEP)

 

W

 

 

 

 

Simple

 

 

 

 

 

 

72

Science and Engineering of Droplets

 

 

Table 2.5. (Cont’d.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Droplet

 

Cooling

Through-

Capacity

 

 

 

 

Method

Metal/Alloy

Rate

put

(Metric

Advantage

Limitation

 

 

Size (μm)

 

 

 

 

(°C/s)

(kg/min)

Tons)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solder

 

 

 

 

 

 

 

 

 

30–50

materials,

 

 

 

Spherical &

 

 

 

 

 

Welding

 

 

 

 

 

 

 

USWA:

 

 

 

high quality

 

 

 

 

electrodes,

 

 

 

Low volume

 

Ultrasonic

 

>100

USWA:

 

 

particles,

 

 

Ag-, Cu-base

0.02–0.8

Low

&

 

Atomization

Medium

~107

Low cost,

 

 

 

 

size

alloys,

 

 

 

Small unit,

productivity

 

 

 

 

Dispersion-

 

 

 

 

 

 

 

distribution

 

 

 

High EE

 

 

 

 

hardened

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

alloys

 

 

 

 

 

 

 

 

 

 

 

 

Carbon-, low-

 

 

 

 

 

 

 

 

 

 

 

 

alloy-,

 

 

 

Between

 

 

 

Steam

 

Coarse

stainless

~103

gas and

Irregular

 

Atomization

 

steels, Co-,

water

particle shape

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ni-base

 

 

 

atomization

 

 

 

 

 

 

 

 

superalloys

 

 

 

 

 

 

 

 

50–500

Sn, Pb, Sb,

 

 

 

Narrow size

Limited to

 

 

Pressure

Standard

 

 

 

 

 

Bi, In, Mg,

~17

distribution

low melting

 

Atomization

deviation:

 

Al, Zn

 

 

 

High EE

point metals

 

 

 

 

1.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vibrating-

103−104

 

 

 

 

Very

Coarse

 

Standard

 

 

 

 

narrow size

particles,Very

 

 

Orifice

Ca, Zn, Al

Low

Very low

Low

low volume

 

 

deviation:

distribution,

 

Atomization

 

 

 

 

&

 

 

<1.05

 

 

 

 

High EE

 

 

 

 

 

 

 

 

productivity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Electro-

600−850

 

 

0.05

 

Narrow size

Low volume

 

 

Magnetic

Narrow size

Sn, Pb

Low

 

&

 

 

0.12

distribution

 

Atomization

distribution

 

 

 

productivity

 

 

 

 

 

 

 

 

 

 

103

 

Fe, Steels,

 

 

 

Simple,

 

 

Impaction

3

15

Cast iron,

 

 

 

High EE,

Very coarse

 

 

 

×

 

×

 

Low

Large

Large

 

 

 

Atomization

 

103

 

Ferroalloys,

Large

particles

 

 

 

 

 

 

 

Mattes

 

 

 

throughput

 

 

Electrostatic

 

 

 

 

 

 

 

 

Potentially

Difficulties in

 

 

 

Very low

Low

narrow size

practical

 

Atomization

 

 

 

 

 

 

 

 

 

 

 

distribution

operation

 

 

 

 

 

 

 

 

 

 

 

This section describes the atomization processes and techniques for metal droplet generation. Advantages and drawbacks of the atomization systems are discussed along with typical ranges of operation conditions, design characteristics, and actual and potential applications. Commonly used atomization media and their thermophysical properties are also included.

Соседние файлы в предмете Химия