Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
геология.docx
Скачиваний:
27
Добавлен:
27.05.2015
Размер:
455.21 Кб
Скачать

1-Происхождение и ранняя история развития Земли

Образование планеты Земля. Процесс образования каждой из планет Солнечной системы имел свои особенности. Около 5 млрд. лет на расстоянии 150 млн. км от Солнца зародилась наша планета. При падении на нее астероидных тел вещество нагревалось и дробилось. Первичное вещество сжималось под действием силы тяготения, принимало форму шара, недра которого разогревались. Земля в самом начале своего существования как планеты представляла собой холодное газопылевое облако. Постепенно за счет гравитационных сил и энергии распада радиоактивных веществ недра Земли стали разогреваться. Когда температура недр достигла уровня плавления окислов железа и других соединений, начались активные процессы формирования ядра и основных оболочек планеты. Тяжелые элементы, в основном металлы погружались вниз, а легкие по массе элементы поднимались вверх и образовывали земную кору. Происходили процессы перемешивания, шли химические реакции, более легкие силикатные породы выдавливались из глубины на поверхность и образовали земную кору, тяжелые -  оставались внутри планеты. Разогревание сопровождалось бурной вулканической деятельностью, при этом пары и газы вырывались наружу. В процессе вулканической деятельности рождалась земная атмосфера, а водяные пары конденсировались в океанах. Земля не самая большая, но и не самая маленькая планета среди своих соседей. Экваториальный радиус ее, равен 6378 км, из-за центробежной силы, создаваемой суточным вращением, больше полярного на 21 км. Давление в центре Земли составляет 3 млн. атм., а плотность вещества - около 12г/см3.  Форма и размеры Земли.  Земля имеет шарообразную форму. Ее диаметр около 12 750 км. Поскольку человек видит лишь небольшую часть Земли, земная поверхность кажется ему плоским кругом, ограниченным линией, где небо как бы соприкасается с Землей. Недаром у многих народов наша планета отождествлялась с полоской поверхностью. Во времена древнегреческой цивилизации люди стали предполагать, что Земля это шар. Первые доказательства шарообразности принадлежат Аристотелю (4 век до нашей эры). Он наблюдал за лунными затмениями, во время которых тень от земли отражалась на поверхности Луны. Постепенно представления о Земле как о шаре стали основываться не на наблюдениях, а на математических расчетах. Древнегреческий математик, астроном и географ растофен Киренский (около 276-194 гг. до н.э.) с удивительной точностью определил размеры земного шара. Сейчас мы знаем, что вдень летнего солнцестояния (21-22 июня), в полдень Солнце на Тропике Рака (или Северном тропике) находится в зените, т.е. его лучи отвесно падают на поверхность Земли. Эрастофену же было известно, что в этот день Солнце освещает дно даже самых глубоких колодцев в окрестностях Сиены (Сиена древнее название Асуана). В полдень он по тени от вертикального столба, установленного в Александрии, в 800 км от Сиены, измерил угол между столбом и лучами солнца (для измерения Эрастофен сделал прибор - скафис, полусферу со стержнем, отбрасывающим тень) и нашел его равным  7,2 о, что составляет 7,2/360 долю полной окружности, т.е. 800 км ли 5 000 греческих стадий (1 стадия примерно равнялась 160 км, что примерно равно современному 1 градусу и соответственно 111 км). Отсюда Эрастофен вывел, что длина экватора = 40 000 км (согласно современным данным длина экватора 40 075 км). Следующим этапом в развитии теории о шарообразности земли является эпоха Великих географических открытий. С этого периода не стало сомнений в шарообразности Земли и в это же время была изготовлена первая модель Земли - глобус. Его автором являлся немецкий ученый Мартин Бехайм (1492 г.). С открытием Ньютоном силы тяжести и силы притяжения было доказано что земля приплюснута с полюсов вследствие осевого движения и поэтому имеет фигуру не настоящего шара а фигуру эллипса или эллипсоида вращения. В 19 веке было установлено, что фигура Земли сложнее. Она отклоняется от правильной формы эллипсоида из-за неоднородности распределения масс. Фигура земли стала называться геоидом - подобный Земле. Геоид определяют как фигуру, поверхность которой совпадает с уровенной поверхностью Мирового океана или можно сказать, что это линия поверхности земли без водной оболочки. Следовательно, Земля является и шаром и эллипсом и геоидом.

Доказательства шарообразности Земли.

1.     При восходе Солнца его лучи освящают сначала облака и другие высокие предметы, тот же процесс наблюдается и во время заката.

2.     На ровной открытой поверхности или на берегу моря, удаляющиеся от наблюдателя предметы постепенно скрываются за линией горизонта.

3.     При подъеме вверх увеличивается кругозор. На ровной поверхности человек видит вокруг себя на 4 км, на высоте 20 м уже 16 км, с высоты 100 м кругозор расширяется на 36 км. На высоте 327 км можно наблюдать пространство диаметром 4000 км.

4.     Все небесные тела нашей солнечной системы имеют шарообразную форму и Земля в этом случае не исключение.

5.     Фотоснимки Земли из космоса. 

 Фигура и размеры Земли имеют большое географическое значение. Шарообразная фигура Земли обусловливает уменьшение угла падения солнечных лучей на земную поверхность от экватора к полюсам и образование нескольких тепловых поясов. Тепловые пояса, в свою очередь, наряду с другими факторами (величиной и массой Земли, определенного расстояния от Солнца) обуславливают закономерное изменение многих природных процессов и компонентов географической оболочки по направлению от экватора к полюсам, т.е. широтную зональность. Размеры и масса Земли предопределяют такую силу земного притяжения, которая удерживает атмосферу и гидросферу, без которых невозможно существование жизни.

Магнитные свойства Земли. Вокруг земного шара имеется магнитное поле. По предположениям ученых оно связано с плотным богатым железом ядром Земли. Он выполняет функцию естественного магнита. Являясь большим магнитом, Земля имеет ось и два полюса. Действие магнитного поля наиболее наглядно проявляется на магнитной стрелке компаса, которая всегда показывает направление север-юг. Магнитное поле Земли не является постоянным и подвержено периодическим изменениям. Изменения могут быть суточные, годовыми и вековыми. Причины их кроются в строении земной коры и в воздействии со стороны Солнца. Установлено что некоторые магнитные изменения или бури сопровождаются землетрясениями и извержениями вулканов. Магнитное поле простирается до высоты 90 тыс. км. Выше этой зоны оно теряет способность притягивать частицы вещества.

Внутреннее строение земного шара

2-Внутреннее строение

Земля, как и другие планеты земной группы, имеет слоистое внутреннее строение. Она состоит из твёрдых силикатных оболочек (коры, крайне вязкой мантии), и металлического ядра. Внешняя часть ядра жидкая (значительно менее вязкая, чем мантия), а внутренняя — твёрдая.

Внутренняя теплота планеты обеспечивается сочетанием остаточного тепла, оставшегося от аккреции вещества, которая происходила на начальном этапе формирования Земли (около 20 %) и радиоактивным распадом нестабильных изотопов: калия-40, урана-238, урана-235 и тория-232. У всех трёх изотопов период полураспада составляет более миллиарда лет. В центре планеты, температура, возможно, поднимается до 7000 К, а давление может достигать 360 ГПа (3,6 млн. атм). Часть тепловой энергии ядра передаётся к земной коре посредством плюмов. Плюмы приводят к появлению горячих точек и траппов. Поскольку бо́льшая часть тепла, производимого Землёй, обеспечивается радиоактивным распадом, то в начале истории Земли, когда не были истощены запасы короткоживущих изотопов, энерговыделение нашей планеты было гораздо больше, чем сейчас.

Внутреннее строение Земли. Из недр Земли постоянно выделяется тепловой поток, а так тепло может передаваться только от более горячего вещества к более холодному, то температура внутри планеты должна быть выше, чем на ее поверхности. Глубинное бурение показало что, температура с глубиной увеличивается на 20 градусов на каждый километр и меняется от места к месту. Внутреннее строение Земли. Установить внутреннее строение Земли удалось сейсмическим методом. Суть его заключается в том, что при взрыве колебания в Земле идут с разной скоростью, в зависимости от состава пород и плотности вещества. В результате было установлены внутренние оболочки нашей планеты: земная кора, мантия, ядро. Верхняя оболочка Земли или земная кора - самая неоднородная и сложно устроенная. Под материками она состоит из трех слоев: осадочного, гранитного, базальтового. Мощность земной коры под материками составляет от 20 до 80 км. Под океанами осадочный слой имеет толщину всего 500 метров, гранитный слой под океанами отсутствует практически повсеместно, а базальтовый слой имеет мощность около 5 км. Между земной корой и мантией располагается промежуточный слой, который называется граница Мохоровичича, в честь сербского физика Мохоровичича, (открывшего его в 1909 году). Толщина земной коры (внешней оболочки) изменяется от нескольких километров (в океанических областях) до нескольких десятков километров (в горных районах материков). Сфера земной коры очень небольшая на ее долю приходится всего около 0,5 % общей массы планеты. Основной состав коры - это окислы кремния, алюминия, железа, щелочных металлов. В составе континентальной коры, где под осадочным слоем содержится верхний (гранитный) и нижний (базальтовый) встречаются небольшие древние породы Земли, возраст которых, оценивается более чем в 3 млрд. лет. Океаническая же земная кора под осадочным слоем содержит в основном один слой, близкий по возрасту к базальтам. Возраст осадочного чехла не превышает 100-150 млн. лет. От нижележащей мантии земную кору отделяет во многом еще загадочный слой Мохо в котором скорость распространения сейсмических волн скачкообразно увеличивается. Следующий слой мантия. Мантия - это тоже оболочка Земли, в которой вещество, ее составляющее находится в пластическом состоянии (как густая паста). Она простирается от земной коры до глубины 2900 км. Мантия состоит также из трех слоев. Два верхних слоя образуют верхнюю мантию (850-900 км), нижний слой - 2000 км. На долю мантии приходится около 67% общей массы планеты. Твердый слой верхней мантии, распространяющийся до различных глубин под океанами и континентами, совместно с земной корой называют литосферой (от греческого - <литос>- камень) или твердой оболочкой Земли. Она разбита глубинными разломами на крупные блоки, называемые литосферными плитами. Эти плиты то расходятся, то сходятся, как бы плавая, по поверхности мантии и это явление получило название дрейфа тектонических плит. Под ней отмечен слой, где наблюдается некоторое уменьшение скорости распространения сейсмических волн, что говорит о своеобразном состоянии вещества. Этот слой менее вязкий и более пластичный  по отношению к выше и ниже лежащим слоям, и называется астеносферой. Считается что, вещество мантии находится в непрерывном движении и высказывается предположение, что в относительно глубоких слоях мантии с ростом температуры и давления происходит переход вещества в более плотные модификации. Такой переход подтверждается и экспериментальными исследованиями.

В нижней мантии на глубине 2900 километров отмечается резкий скачок не только в скорости продольных волн, но и в плотности, а поперечные волны здесь исчезают совсем, что указывает на смену вещественного состава пород. Это внешняя граница ядра Земли.  Ядро Земли состоит из внешней и внутренней оболочек. Предполагают, что с глубины 2900 км до глубины 5100 км находится внешнее ядро, по своему физическому состоянию приближающееся к жидкости. Оставшиеся до центра Земли 1270 км составляют внутреннее ядро. Оно твердое и на 80 % состоит из железа и на 20% из диоксида кремния. Температура согласно расчетным данным во внутреннем ядре составляет несколько тысяч градусов (4000-5000 оС). Земной ядро интересовало ученых с момента его открытия  в 1936 году. Получить его изображение было чрезвычайно трудно из-за относительно малого числа сейсмических волн, достигавших его и возвратившихся к поверхности. Кроме того, экстремальные температуры и давление ядра долгое время трудно было воспроизвести в лаборатории. Новые исследования способны обеспечить более детальную картину центра нашей планеты. Земное ядро разделяется на 2 отдельные области: жидкую (внешнее ядро) и твердую (внутреннее ядро), переход между которыми лежит на глубине 5156 км. Железо - единственный элемент, который близко соответствует сейсмическим свойствам земного ядра и достаточно обильно распространен во Вселенной, чтобы представить в ядре планеты приблизительно 35 % ее массы. По современным данным внешнее ядро представляет собой вращающиеся потоки расплавленного железа и никеля, хорошо проводящие электричество. Именно с ним связывают происхождение земного магнитного поля, считая что, подобно гигантскому генератору, электрические токи, текущие в жидком ядре создают магнитное поле Земли. Слой мантии находящийся в непосредственном соприкосновении с внешним ядром, испытывает его влияние, поскольку температуры в ядре выше, чем в мантии. Местами этот слой порождает огромные направленные к поверхности Земли тепломассопотоки. Внутреннее ядро не связано с мантией. Полагают, что его твердое состояние, несмотря на высокую температуру, обеспечивается гигантским давлением в центре Земли. Высказываются предположения о том, что в ядре помимо железоникелевых сплавов должны присутствовать и более легкие элементы, такие как кремний и сера, а возможно кремний и кислород. Вопрос о состоянии ядра Земли до сих пор остается дискуссионным. По мере удаления от поверхности увеличивается сжатие, которому подвергается вещество. Расчеты показывают, что в земном ядре давление может достигать 3 млн. атм. При этом многие вещества как бы металлизируются - переходят в металлическое состояние. Существовала гипотеза, что ядро Земли состоит из металлического водорода.

3-Атмосфера, гидросфера, биосфера Земли

Атмосфера-газовая оболочка, окружающая небесное тело. Ее характеристики зависят от размера, массы, температуры, скорости вращения и химического состава данного небесного тела, а также определяются историей его формирования начиная с момента зарождения. Атмосфера Земли образована смесью газов, называемой воздухом. Ее основные составляющие - азот и кислород в соотношении приблизительно 4:1. На человека оказывает воздействие главным образом состояние нижних 15-25 км атмосферы, поскольку именно в этом нижнем слое сосредоточена основная масса воздуха. Наука, изучающая атмосферу, называется метеорологией, хотя предметом этой науки являются также погода и ее влияние на человека. Состояние верхних слоев атмосферы, расположенных на высотах от 60 до 300 и даже 1000 км от поверхности Земли, также изменяется. Здесь развиваются сильные ветры, штормы и проявляются такие удивительные электрические явления, как полярные сияния. Многие из перечисленных феноменов связаны с потоками солнечной радиации, космического излучения, а также магнитным полем Земли. Высокие слои атмосферы - это также и химическая лаборатория, поскольку там в условиях, близких к вакууму, некоторые атмосферные газы под влиянием мощного потока солнечной энергии вступают в химические реакции. Наука, изучающая эти взаимосвязанные явления и процессы, называется физикой высоких слоев атмосферы.

ОБЩАЯ ХАРАКТЕРИСТИКА АТМОСФЕРЫ ЗЕМЛИ Размеры. Пока ракеты-зонды и искусственные спутники не исследовали внешние слои атмосферы на расстояниях, в несколько раз превосходящих радиус Земли, считалось, что по мере удаления от земной поверхности атмосфера постепенно становится более разреженной и плавно переходит в межпланетное пространство. Сейчас установлено, что потоки энергии из глубоких слоев Солнца проникают в космическое пространство далеко за орбиту Земли, вплоть до внешних пределов Солнечной системы. Этот т.н. солнечный ветер обтекает магнитное поле Земли, формируя удлиненную "полость", внутри которой и сосредоточена земная атмосфера. Магнитное поле Земли заметно сужено с обращенной к Солнцу дневной стороны и образует длинный язык, вероятно выходящий за пределы орбиты Луны, - с противоположной, ночной стороны. Граница магнитного поля Земли называется магнитопаузой. С дневной стороны эта граница проходит на расстоянии около семи земных радиусов от поверхности, но в периоды повышенной солнечной активности оказывается еще ближе к поверхности Земли. Магнитопауза является одновременно границей земной атмосферы, внешняя оболочка которой называется также магнитосферой, так как в ней сосредоточены заряженные частицы (ионы), движение которых обусловлено магнитным полем Земли. Общий вес газов атмосферы составляет приблизительно 4,5*1015 т. Таким образом, "вес" атмосферы, приходящийся на единицу площади, или атмосферное давление, составляет на уровне моря примерно 11 т/м2. Значение для жизни. Из сказанного выше следует, что Землю от межпланетного пространства отделяет мощный защитный слой. Космическое пространство пронизано мощным ультрафиолетовым и рентгеновским излучением Солнца и еще более жестким космическим излучением, и эти виды радиации губительны для всего живого. На внешней границе атмосферы интенсивность излучения смертоносна, но значительная его часть задерживается атмосферой далеко от поверхности Земли. Поглощением этого излучения объясняются многие свойства высоких слоев атмосферы и особенно происходящие там электрические явления. Самый нижний, приземный слой атмосферы особенно важен для человека, который обитает в месте контакта твердой, жидкой и газообразной оболочек Земли. Верхняя оболочка "твердой" Земли называется литосферой. Около 72% поверхности Земли покрыто водами океанов, составляющими большую часть гидросферы. Атмосфера граничит как с литосферой, так и с гидросферой. Человек живет на дне воздушного океана и вблизи или выше уровня океана водного. Взаимодействие этих океанов является одним из важных факторов, определяющих состояние атмосферы. Состав. Нижние слои атмосферы состоят из смеси газов (см. табл.). Кроме приведенных в таблице, в виде небольших примесей в воздухе присутствуют и другие газы: озон, метан, такие вещества, как оксид углерода (СО), оксиды азота и серы, аммиак.

СОСТАВ АТМОСФЕРЫ

В высоких слоях атмосферы состав воздуха меняется под воздействием жесткого излучения Солнца, которое приводит к распаду молекул кислорода на атомы. Атомарный кислород является основным компонентом высоких слоев атмосферы. Наконец, в наиболее удаленных от поверхности Земли слоях атмосферы главными компонентами становятся самые легкие газы - водород и гелий. Поскольку основная масса вещества сосредоточена в нижних 30 км, то изменения состава воздуха на высотах более 100 км не оказывают заметного влияния на общий состав атмосферы. Тропосфера - нижний слой атмосферы, простирающийся до первого термического минимума (т.н. тропопаузы). Верхняя граница тропосферы зависит от географической широты (в тропиках - 18-20 км, в умеренных широтах - ок. 10 км) и времени года. Национальная метеорологическая служба США провела зондирование вблизи Южного полюса и выявила сезонные изменения высоты тропопаузы. В марте тропопауза находится на высоте ок. 7,5 км. С марта до августа или сентября происходит неуклонное охлаждение тропосферы, и ее граница на короткий период в августе или сентябре поднимается приблизительно до высоты 11,5 км. Затем с сентября по декабрь она быстро понижается и достигает своего самого низкого положения - 7,5 км, где и остается до марта, испытывая колебания в пределах всего 0,5 км. Именно в тропосфере в основном формируется погода, которая определяет условия существования человека. Большая часть атмосферного водяного пара сосредоточена в тропосфере, и поэтому здесь главным образом и формируются облака, хотя некоторые из них, состоящие из ледяных кристаллов, встречаются и в более высоких слоях. Для тропосферы характерны турбулентность и мощные воздушные течения (ветры) и штормы. В верхней тропосфере существуют сильные воздушные течения строго определенного направления. Турбулентные вихри, подобные небольшим водоворотам, образуются под воздействием трения и динамического взаимодействия между медленно и быстро движущимися воздушными массами. Поскольку в этих высоких слоях облачности обычно нет, такую турбулентность называют "турбулентностью ясного неба". Стратосфера. Вышележащий слой атмосферы часто ошибочно описывают как слой со сравнительно постоянными температурами, где ветры дуют более или менее устойчиво и где метеорологические элементы мало меняются. Верхние слои стратосферы нагреваются при поглощении кислородом и озоном солнечного ультрафиолетового излучения. Верхняя граница стратосферы (стратопауза) проводится там, где температура несколько повышается, достигая промежуточного максимума, который нередко сопоставим с температурой приземного слоя воздуха. На основе наблюдений, проведенных с помощью самолетов и шаров-зондов, приспособленных для полетов на постоянной высоте, в стратосфере установлены турбулентные возмущения и сильные ветры, дующие в разных направлениях. Как и в тропосфере, отмечаются мощные воздушные вихри, которые особенно опасны для высокоскоростных летательных аппаратов. Сильные ветры, называемые струйными течениями, дуют в узких зонах вдоль границ умеренных широт, обращенных к полюсам. Однако эти зоны могут смещаться, исчезать и появляться вновь. Струйные течения обычно проникают в тропопаузу и проявляются в верхних слоях тропосферы, но их скорость быстро уменьшается с понижением высоты. Возможно, часть энергии, поступающей в стратосферу (главным образом затрачиваемой на образование озона), оказывает воздействие на процессы в тропосфере. Особенно активное перемешивание связано с атмосферными фронтами, где обширные потоки стратосферного воздуха были зарегистрированы существенно ниже тропопаузы, а тропосферный воздух вовлекался в нижние слои стратосферы. Значительные успехи были достигнуты в изучении вертикальной структуры нижних слоев атмосферы в связи с совершенствованием техники запуска на высоты 25-30 км радиозондов. Мезосфера - располагающаяся выше стратосферы, представляет собой оболочку, в которой до высоты 80-85 км происходит понижение температуры до минимальных показателей для атмосферы в целом. Рекордно низкие температуры до -110° С были зарегистрированы метеорологическими ракетами, запущенными с американо-канадской установки в Форт-Черчилле (Канада). Верхний предел мезосферы (мезопауза) примерно совпадает с нижней границей области активного поглощения рентгеновского и наиболее коротковолнового ультрафиолетового излучения Солнца, что сопровождается нагреванием и ионизацией газа. В полярных регионах летом в мезопаузе часто появляются облачные системы, которые занимают большую площадь, но имеют незначительное вертикальное развитие. Такие светящиеся по ночам облака часто позволяют обнаруживать крупномасштабные волнообразные движения воздуха в мезосфере. Состав этих облаков, источники влаги и ядер конденсации, динамика и связь с метеорологическими факторами пока еще недостаточно изучены. Термосфера представляет собой слой атмосферы, в котором непрерывно повышается температура. Его мощность может достигать 600 км. Давление и, следовательно, плотность газа с высотой постоянно уменьшаются. Вблизи земной поверхности в 1 м3 воздуха содержится ок. 2,5ґ1025 молекул, на высоте ок. 100 км, в нижних слоях термосферы, - приблизительно 1019, на высоте 200 км, в ионосфере, - 5*10 15 и, по расчетам, на высоте ок. 850 км - примерно 1012 молекул. В межпланетном пространстве концентрация молекул составляет 10 8-10 9 на 1 м3. На высоте ок. 100 км количество молекул невелико, и они редко сталкиваются между собой. Среднее расстояние, которое преодолевает хаотически движущаяся молекула до столкновения с другой такой же молекулой, называется ее средним свободным пробегом. Слой, в котором эта величина настолько увеличивается, что вероятностью межмолекулярных или межатомных столкновений можно пренебречь, находится на границе между термосферой и вышележащей оболочкой (экзосферой) и называется термопаузой. Термопауза отстоит от земной поверхности примерно на 650 км. При определенной температуре скорость движения молекулы зависит от ее массы: более легкие молекулы движутся быстрее тяжелых. В нижней атмосфере, где свободный пробег очень короткий, не наблюдается заметного разделения газов по их молекулярному весу, но оно выражено выше 100 км. Кроме того, под воздействием ультрафиолетового и рентгеновского излучения Солнца молекулы кислорода распадаются на атомы, масса которых составляет половину массы молекулы. Поэтому по мере удаления от поверхности Земли атомарный кислород приобретает все большее значение в составе атмосферы и на высоте около 200 км становится ее главным компонентом. Выше, приблизительно на расстоянии 1200 км от поверхности Земли, преобладают легкие газы - гелий и водород. Из них и состоит внешняя оболочка атмосферы. Такое разделение по весу, называемое диффузным расслоением, напоминает разделение смесей с помощью центрифуги. Экзосферой называется внешний слой атмосферы, выделяемый на основе изменений температуры и свойств нейтрального газа. Молекулы и атомы в экзосфере вращаются вокруг Земли по баллистическим орбитам под воздействием силы тяжести. Некоторые из этих орбит параболические и похожи на траектории метательных снарядов. Молекулы могут вращаться вокруг Земли и по эллиптическим орбитам, как спутники. Некоторые молекулы, в основном водорода и гелия, имеют разомкнутые траектории

ПРОИСХОЖДЕНИЕ АТМОСФЕРЫ ЗЕМЛИ Историю образования атмосферы пока не удалось восстановить абсолютно достоверно. Тем не менее, выявлены некоторые вероятные изменения ее состава. Становление атмосферы началось сразу после формирования Земли. Имеются довольно веские основания полагать, что в процессе эволюции Праземли и обретения ею близких к современным размеров и массы она практически полностью утратила свою первоначальную атмосферу. Считается, что на раннем этапе Земля находилась в расплавленном состоянии и ок. 4,5 млрд. лет назад оформилась в твердое тело. Этот рубеж принимается за начало геологического летоисчисления. С этого времени происходила и медленная эволюция атмосферы. Некоторые геологические процессы, как, например, излияния лавы при извержениях вулканов, сопровождались выбросом газов из недр Земли. В их состав, вероятно, входили азот, аммиак, метан, водяной пар, оксид и диоксид углерода. Под воздействием солнечной ультрафиолетовой радиации водяной пар разлагался на водород и кислород, но освободившийся кислород вступал в реакцию с оксидом углерода с образованием углекислого газа. Аммиак разлагался на азот и водород. Водород в процессе диффузии поднимался вверх и покидал атмосферу, а более тяжелый азот не мог улетучиться и постепенно накапливался, становясь основным ее компонентом, хотя некоторая его часть связывалась в ходе химических реакций. Под воздействием ультрафиолетовых лучей и электрических разрядов смесь газов, вероятно присутствовавших в первоначальной атмосфере Земли, вступала в химические реакции, в результате которых происходило образование органических веществ, в частности аминокислот. Следовательно, жизнь могла зародиться в атмосфере, принципиально отличной от современной. С появлением примитивных растений начался процесс фотосинтеза, сопровождавшийся выделением свободного кислорода. Этот газ, особенно после диффузии в верхние слои атмосферы, стал защищать ее нижние слои и поверхность Земли от опасных для жизни ультрафиолетового и рентгеновского излучений. По оценкам, наличие всего 0,00004 современного объема кислорода могло привести к формированию слоя с вдвое меньшей, чем сейчас, концентрацией озона, что, тем не менее, обеспечивало весьма существенную защиту от ультрафиолетовых лучей. Вероятно также, что в первичной атмосфере содержалось много углекислого газа. Он расходовался в ходе фотосинтеза, и его концентрация должна была уменьшаться по мере эволюции мира растений, а также из-за поглощения в ходе некоторых геологических процессов. Поскольку парниковый эффект связан с присутствием углекислого газа в атмосфере, некоторые ученые полагают, что колебания его концентрации являются одной из важных причин таких крупномасштабных климатических изменений в истории Земли, как ледниковые периоды. Присутствующий в современной атмосфере гелий, вероятно, большей частью является продуктом радиоактивного распада урана, тория и радия. Эти радиоактивные элементы испускают альфа-частицы, которые представляют собой ядра атомов гелия. Поскольку в ходе радиоактивного распада электрический заряд не образуется и не исчезает, на каждую альфа-частицу приходится два электрона. В итоге она соединяется с ними, образуя нейтральные атомы гелия. Радиоактивные элементы содержатся в минералах, рассеянных в толще горных пород, поэтому значительная часть гелия, образовавшегося в результате радиоактивного распада, сохраняется в них, очень медленно улетучиваясь в атмосферу. Некоторое количество гелия за счет диффузии поднимается вверх в экзосферу, но благодаря постоянному притоку от земной поверхности объем этого газа в атмосфере неизменен. На основании спектрального анализа света звезд и изучения метеоритов можно оценить относительное содержание различных химических элементов во Вселенной. Концентрация неона в космосе примерно в десять миллиардов раз выше, чем на Земле, криптона - в десять миллионов раз, а ксенона - в миллион раз. Отсюда следует, что концентрация этих инертных газов, изначально присутствовавших в земной атмосфере и не пополнявшихся в процессе химических реакций, сильно снизилась, вероятно, еще на этапе утраты Землей своей первичной атмосферы. Исключение составляет инертный газ аргон, поскольку в форме изотопа 40Ar он и сейчас образуется в процессе радиоактивного распада изотопа калия. Гидросфера - (от др.-греч. Yδωρ к Hydor - вода и σφαῖρα к Sphaira - шар) (англ. hydrosphere) - совокупность всех водных запасов Земли, прерывистая водная оболочка земного шара, расположенная на поверхности и в толще земной коры и представляющая собой совокупность всех видов природных вод (океанов, морей, поверхностных вод суши, подземных вод и ледяных покровов). В более широком смысле в состав гидросферы включают также атмосферную воду и воду живых организмов. Каждая из групп вод делится на подгруппы более низких рангов. Например, в атмосфере можно выделить воды в тропосфере и стратосфере, на поверхности Земли - воды океанов и морей, а также рек, озёр и ледников; в литосфере - воды фундамента и осадочного чехла (в том числе воды артезианских бассейнов и гидрогеологических массивов). Большая часть воды сосредоточена в океане, значительно меньше - в континентальной речной сети и подземных водах. Также большие запасы воды имеются в атмосфере, в виде облаков и водяного пара. Свыше 96% объема гидросферы составляют моря и океаны, около 2% - подземные воды, около 2% - льды и снега, около 0,02% - поверхностные воды суши. Часть воды находится в твёрдом состоянии в виде ледников, снежного покрова и в вечной мерзлоте, представляя собой криосферу. Поверхностные воды, занимая сравнительно малую долю в общей массе гидросферы, тем не менее играют важнейшую роль в жизни нашей планеты, являясь основным источником водоснабжения, орошения и обводнения. Количество пресных вод в гидросфере, доступных для использования, около 0,3%. Воды гидросферы находятся в постоянном взаимодействии с атмосферой, земной корой и биосферой. Речные и пресные подземные воды зоны водообмена интенсивно возобновляются в процессе общего круговорота воды, что позволяет при рациональной эксплуатации использовать их неограниченно долгое время. Современная гидросфера - результат длительной эволюции Земли и дифференциации её вещества. Взаимодействие этих вод и взаимные переходы из одних видов вод в другие составляют сложный круговорот воды на Земном шаре. В гидросфере впервые зародилась жизнь на Земле. Лишь в начале палеозойской эры началось постепенное переселение животных и растительных организмов на сушу. Гидросфера - незамкнутая система, между водами которой существует тесная взаимосвязь, обуславливающая единство гидросферы как природной системы и взаимодействие гидросферы с другими геосферами. Поступление воды в гидросферу при вулканизме, из атмосферы, литосферы (отжатие вод при литификации илов и др.) происходит непрерывно, также, как и удаление воды из гидросферы. Захоронение вод в литосфере распространяется на целые геологические периоды (десятки млн. лет). В гидросфере происходят также разложение и синтез воды. Отдельные звенья гидросферы отличаются как по свойствам среды, содержащей воду, так и по свойствам и составу самой воды. Однако благодаря круговороту воды различных масштабов и продолжительности (океан- материк, внутриматериковый круговорот, круговороты в пределах отдельных бассейнов рек, озёр, ландшафтов и т.д.) она представляет собой единое целое. Все формы круговорота воды составляют единый гидрологический цикл, в процессе которого происходит возобновление всех видов вод. Наиболее быстро обновляются биологические воды, входящие в состав растений и живых организмов и атмосферные воды. Наиболее продолжительный период (тысячи, десятки и сотни тысяч лет) приходится на возобновление ледников, глубоко залегающих подземных вод, вод Мирового океана. Управление круговоротом воды, его практическое использование - важная научная проблема, имеющая большое экономическое значение.

Биосфера - совокупность частей земной оболочки (лито,гидроиатмосфера), которая заселенаживымиорганизмами, находится под их воздействием и занята продуктами их жизнедеятельности. Это активная оболочкаЗемли, в которой совокупная деятельность живых организмов проявляется как геохимическая сила планетарного масштаба. Биосфера - оболочка Земли, состав, структура и энергетика которой определяются совокупной деятельностью живых организмов. Понятие «биосферы как области жизни» и наружной оболочки Земли восходит к биологу Ламарку (1744–1829). Сам термин биосфера ввел Э. Зюсс (1875), понимавший ее как тонкую пленку жизни на земной поверхности, в значительной мере определяющую «лик Земли». Заслуга же создания целостного учения о биосфере принадлежитВ. И. Вернадскому. На формирование его биосферного мышления большое влияние оказали работы В. В. Докучаева опочвекак о естественно-историческом теле. Биосфера охватывает часть атмосферы до высоты озонового экрана (20–25 км), часть литосферы, особеннокору выветривания, и всю гидросферу. Нижняя граница опускается в среднем на 2–3 км под поверхность суши и на 1–2 км под дноокеана.Вернадскийрассматривал биосферу как область жизни, включающую наряду с организмами и среду их обитания. Он выделил семь разных, но геологически взаимосвязанных типов веществ: живое вещество, биогенное вещество (горючие ископаемые, известняки и др., т. е. вещество, создаваемое и перерабатываемое живыми организмами), косное вещество (образуется в процессах, в которых живые организмы не участвуют), биокосное вещество (создается одновременно живыми организмами и в ходе процессов неорганической природы, например почва), радиоактивное вещество, рассеянные атомы и вещество космического происхождения (метеориты, космическая пыль). Биосфера состоит изтропосферы- нижней части воздушной оболочки Земли (атмосферы), водной оболочки (гидросферы) и верхней части (на глубину 2-3 км) твердой оболочки (литосферы). Биосфера или сфера жизниЗемлине занимает обособленного положения, а располагается в пределах других оболочек, охватывая гидросферу, тропосферу и верхнюю часть земной коры — её приповерхностный и почвенный слои. Живые организмы встречаются и ниже почвенного слоя — в глубоких трещинах,пещерах,подземных водахи даже в нефтеносных слоях на глубине в сотни и тысячи метров.

4-Тепловой режим Земли

Внутреннее тепло Земли. Тепловой режим Земли складывается из двух видов: внешней теплоты, получаемой в виде солнечной радиации, и внутренней, зарождающейся в недрах планеты. Солнце дает Земле огромное количество тепловой энергии. Разные участки земного шара получают неодинаковое количество тепловой энергии: области расположенные вблизи экватора и тропиков - больше, а области умеренных широт  и полярные области - меньше. Солнечная энергия обычно проникает вглубь земной коры на глубину 10-12 км. С глубиной в недрах Земли увеличивается роль внутренней энергии. На некоторой глубине от поверхности Земли располагается пояс постоянной температуры, ниже его происходит увеличение температуры. Она зависит от состава вмещающих пород, деятельности теплых источников и теплоты поступающей из недр Земли.

Состав и строение земной коры. Земная кора состоит из магматических, осадочных и метаморфических горных пород. Магматические горные породы образуются при извержении магмы из глубинных зон Земли  при ее затвердении. Если мама внедряется в земную кору и медленно застывает, в условиях высокого давления на глубине образуются интрузивные горные породы (граниты), при излиянии магмы на поверхность образуются  эффузивные горные породы (базальт, вулканический туф). Осадочные горные породы образуются непосредственно на земной поверхности разными путями: либо за счет жизнедеятельности организмов (известняк, мел, каменный уголь), либо при разрушении и последующем отложении горных пород - обломочные породы (глина, песок, суглинки), либо за счет химических реакций (бокситы, фосфориты, соли разных металлов). Метаморфические горные породы возникают в результате изменения (метаморфизма) различных горных пород, оказавшихся на глубине под влиянием высоких температур и давления (мрамор, кристаллические сланцы). Тепловой режим земли обуславливается солнечной радиацией и тепловой энергией, выделяющейся при радиоактивном распаде, при химических реакциях, в процессе кристаллизации минералов и тектонических процессах.

В верхней части земной коры выделяют три температурные зоны: І – зона сезонных колебаний, ІІ – зона постоянной температуры, ІІІ – зона нарастания температуры. Изменение температуры в первой зоне определяется климатическими условиями местности. Для средних широт характерна кривая а (летний период), и кривая б (в зимний период). В зимний период образуется подзона І-а, где температура опускается ниже 0оС. Глубина промерзания зависит от климата, типа горных пород и колеблется от нескольких см до 2м и более. В зонах с умеренно теплым климатом, зона 1 характеризуется только кривой а. По мере углубления в недра земли влияние суточных и сезонных температур уменьшается и на глубине 12  40 м начинается зона постоянной температуры, равная среднегодовой температуры для данной местности. Если в этой зоне температура опускается ниже 0оС, то вода замерзает и образуется вечная мерзлота. Ниже горизонта постоянных температур под влиянием внутренней теплоты земли или температуры горных пород с глубиной заметно повышается. Величина нарастания температуры на каждые 100 метров глубины называется геотермическим градиентом, а глубина (в метрах) ниже пояса постоянных температур, которой нужно достичь, чтоб температура повысилась на 1оС, называется геотермической ступенью. Увеличение температуры с глубиной имеет большой теоретический и практический интерес. С этим явлением нужно считаться при заложении глубоких шахт, прохождении туннелей (особенно в горах), бурении сверхглубоких скважин. Проходку некоторых глубоких шахт, например шахты золотых рудников в Трансваале (доведенных до глубины 2289 метра), пришлось приостановить, т.к. температура достигла +40оС. при проходе Симплонского туннеля в Альпах на глубине 2690 метра была отмечена температура +50оС.

5-Понятие магме

Магма - (др.-греч.μάγμα — месиво, густая мазь) представляет собой при­родный, чаще всего силикатный, раскаленный, жидкий расплав, воз­никающий в земной коре или в верхнеймантии, на больших глубинах, и при остывании формирующиймагматические горные породы. Излившаяся магма — этолава.

Химический состав магмы

В магме содержатся практически все химиче­ские элементы таблицы Менделеева, среди которых: Si, Al, Fe, Са, Mg, К, Ti, Na, а также различные летучие компоненты (оксиды углерода,сероводород,водород,фтор,хлори др.) и парообразная вода. Летучие компоненты при кристаллизации магмы на глубине частично входят в состав различных минералов (амфиболов, слюд и прочих). В редких случаях отмечаются магматические расплавы несиликатного состава, например щёлочно-карбонатного (вулканыВосточной Африки) или сульфидного. По мере продвижения магмы вверх, количество летучих компонентов сокращается. Дегазированная магма, из­лившаяся на поверхность, называется лавой.

Разновидности магмы

Базальтовая - (основная) магма, по-видимому, имеет боль­шее распространение. В ней содержится около 50 % кремнезёма, в значительном количестве присутствуют алюминий, каль­ций, железо и магний, в меньшем —натрий,калий,титанифосфор. По химическому составу базальтовые магмы подразделяются на толеитовую (перенасыщенна кремнезёмом) ищёлочно-базальтовую(оливин-базальтовую) магму, (недонасыщенную кремнезёмом, но обогащённую щелочами).

Гранитная - (риолитовая, кислая) магма содержит 60—65 % кремнезёма, она имеет меньшую плотность, более вязкая, ме­нее подвижная, в большей степени чем базальтовая магма на­сыщена газами. В зависимости от харак­тера движения магмы и места её застывания, различают два типа магматизма:интрузивный иэффузивный. В первом случае магма остывает и кристаллизуется на глубине, в недрах Земли, во втором — на земной поверхности или в приповерхностных условиях (до 5 км).

Кристаллизация магмы

Любой магматический расплав состоит из жидкости, газа и твёрдых кристаллов, которые стремятся к равновесному состоянию. В зависимости от изменения температуры, давления, состава газов и т.п. меняются расплав и образовавшиеся в нём ранее кристаллы минералов— одни растворяются, другие возникают вновь, и весь объём магмы непрерывно эволюционирует.

6-Эндогенные и экзогенные геологические процессы

Эндогенные процессы - геологические процессы, связанные с энергией, возникающей в недрах Земли. К эндогенным процессам относятся тектонические движения земной коры, магматизм,метаморфизм,сейсмическиеитектонические процессы. Главными источниками энергии эндогенных процессов являются тепло и перераспределение материала в недрах Земли по плотности (гравитационное дифференциация). Это процессы внутренней динамики: происходят вследствие воздействия внутренних, по отношению кЗемле, источников энергии.лубинное тепло Земли, по мнению большинства учёных, имеет преимущественно радиоактивное происхождение. Определённое количество тепла выделяется и при гравитационной дифференциации. Непрерывная генерация тепла в недрах Земли ведёт к образованию потока его к поверхности (тепловой поток). На некоторых глубинах в недрах Земли при благоприятном сочетании вещественного состава, температуры и давления могут возникать очаги и слои частичного плавления. Таким слоем в верхней мантии являетсяастеносфера- основной источник образования магмы; в ней могут возникать конвекционные токи, которые служат предположительного причиной вертикальных и горизонтальных движений влитосфере. Конвекция происходит и в масштабе всей мантия|мантии, возможно, раздельно в нижней и верхней, тем или иным способом приводя к крупным горизонтальным перемещениямлитосферных плит. Охлаждение последних ведёт к вертикальным опусканиям (тектоника плит). В зонах вулканических поясовостровных дуги окраин континентов основные очаги магм вмантиисвязаны со сверхглубинными наклоннымиразломами(сейсмофокальные зоны Вадати-Заварицкого-Беньоффа), уходящими под них со стороны океана (приблизительно до глубины 700 км). Под влиянием теплового потока или непосредственно тепла, приносимого поднимающейся глубинноймагмой, возникают так называемые коровые очаги магмы в самой земной коре; достигая приповерхностных частей коры, магма внедряется в них в виде различных по формеинтрузивов(плутонов) или изливается на поверхность, образуявулканы. Гравитационная дифференциация привела к расслоению Земли на геосферы разной плотности. На поверхности Земли она проявляется также в форме тектонических движений, которые, в свою очередь, ведут к тектоническим деформациям пород земной коры и верхней мантии; накопление и последующая разрядка тектонических напряжений вдоль активных разломов приводят кземлетрясениям. Оба вида глубинных процессов тесно связаны: радиоактивное тепло, понижая вязкость материала, способствует его дифференциации, а последняя ускоряет вынос тепла к поверхности. Предполагается, что сочетание этих процессов ведёт к неравномерности во времени выноса тепла и лёгкого вещества к поверхности, что, в свою очередь, может объяснить наличие в истории земной коры тектономагматических циклов. Пространственные неравномерности тех же глубинных процессов привлекаются к объяснению разделенияземной корына более или менее геологически активные области, например на геосинклинали и платформы. С эндогенными процессами связано формированиерельефаЗемли и образование многих важнейших полезных ископаемых.

Экзогенные- геологические процессы, обусловленные внешними по отношению к Земле источниками энергии (преимущественно солнечное излучение) в сочетании с силой тяжести. Э. п. протекают на поверхности и в приповерхностной зоне земной коры в форме механического и физико-химического её взаимодействия с гидросферой и атмосферой. К ним относятся: Выветривание, геологическая деятельность ветра (эоловые процессы,Дефляция), проточных поверхностных и подземных вод (Эрозия, Денудация), озёр и болот, вод морей и океанов (Абразия), ледников (Экзарация). Главные формы проявления Э. п. на поверхности Земли: разрушение горных пород и химическое преобразование слагающих их минералов (физическое, химическое, органическое выветривание); удаление и перенос разрыхлённых и растворимых продуктов разрушения горных пород водой, ветром и ледниками; отложение (аккумуляция) этих продуктов в виде осадков на суше или на дне водных бассейнов и постепенное их преобразование в осадочные горные породы (Седиментогенез, Диагенез, Катагенез). Э. п. в сочетании с эндогенными процессами участвуют в формировании рельефа Земли, в образовании толщ осадочных горных пород и связанных с ними месторождений полезных ископаемых. Так, например, в условиях проявления специфических процессов выветривания и осадконакопления образуются руды алюминия (бокситы), железа, никеля и др.; в результате селективного отложения минералов водными потоками формируются россыпи золота и алмазов; в условиях, благоприятствующих накоплению органические вещества и обогащенных им толщ осадочных горных пород, возникают горючие полезные ископаемые.

7-Химический и минеральный состав земной коры

В состав земной коры входят все известные химические элементы. Но распределены они в ней неравномерно. Наиболее распространены 8 элементов (кислород, кремний, алюминий, железо, кальций, натрий, калий, магний), которые составляют 99,03% от общего веса земной коры; на долю остальных элементов (их большинство) приходится всего 0,97%, т. е. менее 1%. В природе, благодаря геохимическим процессам нередко образуются значительные скопления какого-либо химического элемента и возникают его месторождения, а другие элементы находятся в рассеянном состоянии. Вот почему некоторые элементы, составляющие небольшой процент в составе земной коры, как, например, золото, находят практическое применение, а другие элементы, пользующиеся более широким распространением в земной коре, как, например, галлий (его содержится в земной коре почти в два раза больше, чем золота), не находят широкого применения, хотя и обладают весьма ценными качествами (галлий применяется для изготовления солнечных фотоэлементов, используемых в космическом кораблестроении). «Редкого» в нашем понимании ванадия в земной коре содержится больше, чем «распространенной» меди, но он не образует больших скоплений. Радия в земной коре содержится десятки миллионов тонн, но он находится в рассеянном виде и поэтому представляет «редкий» элемент. Общие запасы урана исчисляются триллионами тонн, но он рассеян и редко образует месторождения. Химические элементы, входящие в состав земной коры, не всегда находятся в свободном состоянии. Большей частью они образуют природные химические соединения — минералы; Минерал—составная часть горной породы, образовавшейся в результате физико- химических процессов, протекавших и протекающих внутри Земли и на ее поверхности. Минерал — вещество определенного атомного, ионного, или молекулярного строения, устойчивый при определенных значениях температуры и давления. В настоящее время некоторые минералы получают и искусственным путем. Абсолютное большинство представляет собой вещества твердые, кристаллические (кварц и др.). Бывают минералы жидкие (самородная ртуть) и газообразные (метан). В виде свободных химических элементов, или, как их называют, самородных, встречаются золото, медь, серебро, платина, углерод (алмаз и графит), сера и некоторые другие. Такие химические элементы, как молибден, вольфрам, алюминий, кремний и многие другие, встречаются в природе только в виде соединений с другими элементами. Человек извлекает нужные ему химические элементы из природных соединений, которые служат рудой для получения этих элементов. Таким образом, рудой называются минералы или горные породы, из которых промышленным способом можно извлекать чистые химические элементы (металлы и неметаллы). Минералы большей частью встречаются в земной коре совместно, группами, образуя большие естественные закономерные скопления, так называемые горные породы. Горными породами называются минеральные агрегаты, состоящие из нескольких минералов, или большие их скопления. Так, например, горная порода гранит состоит из трех основных минералов: кварца, полевого шпата и слюды. Исключение составляют горные породы, состоящие из одного минерала, как, например, мрамор, состоящий из кальцита. Минералы и горные породы, которые используются и могут быть использованы в народном хозяйстве, называются полезными ископаемыми. Среди полезных ископаемых различают металлические, из которых извлекают металлы, неметаллические, используемые в качестве строительного камня, керамического сырья, сырья для химической промышленности, минеральных удобрений и т. д., горючие ископаемые — уголь, нефть, горючие газы, горючий сланец, торф. Минеральные скопления, содержащие полезные компоненты в количествах, достаточных для экономически выгодной их добычи, представляют месторождения полезных ископаемых.

8- Распространенность химических элементов в земной коре

Элемент

% массы

Кислород

49.5

Кремний

25.3

Алюминий

7.5

Железо

5.08

Кальций

3.39

Натрий

2.63

Калий

2.4

Магний

1.93

Водород

0.97

Титан

0.62

Углерод

0.1

Марганец

0.09

Фосфор

0.08

Фтор

0.065

Сера

0.05

Барий

0.05

Хлор

0.045

Стронций

0.04

Рубидий

0.031

Цирконий

0.02

Хром

0.02

Ванадий

0.015

Азот

0.01

Медь

0.01

Никель

0.008

Цинк

0.005

Олово

0.004

Кобальт

0.003

Свинец

0.0016

Мышьяк

0.0005

Бор

0.0003

Уран

0.0003

Бром

0.00016

Йод

0.00003

Серебро

0.00001

Ртуть

0.000007

Золото

0.0000005

Платина

0.0000005

Радий

0.0000000001

9- Общие сведения о минералах

Минера́л ( от позднелат. "minera" - руда) - природное твёрдое тело с определённым химическим составом, физическими свойствами икристаллической структурой, образующееся в результате природных физико-химических процессов и являющееся составной частьюЗемной Коры,горных пород,руд,метеоритови других планетСолнечной системы. Изучением минералов занимается наукаминералогия.

Понятие "минерал" подразумевает твёрдое природное неорганическое кристаллическое вещество. Но иногда его рассматривают в неоправданно расширенном контексте, относя к минералам некоторые органические, аморфные и другие природные продукты, в частности некоторые горные породы, которые в строгом смысле не могут быть отнесены к минералам.

  • Минералами считаются также некоторые природные вещества, представляющие из себя в обычных условиях жидкости (например, самородная ртуть, которая приходит к кристаллическому состоянию при более низкизкой температуре). Воду, напротив, к минералам не относят, рассматривая её как жидкое состояние (расплав) минерала лёд.

  • Некоторые органические вещества - нефть, асфальты, битумы - часто ошибочно относят к минералам.

  • Некоторые минералы находятся в аморфном состоянии и не имеют кристаллической структуры. Это относится главным образом к т. наз. метамиктным минералам, имеющим внешнюю форму кристаллов, но находящимя в аморфном, стеклоподобном состоянии вследствии разрушения их изначальной кристаллической решетки под действием жёсткого радиоактивного излучения входящих в их собственный состав радиоактивных элементов (U,Th, и тд.). Различают минералы явнокристаллические, аморфные - метаколлоиды (например, опал, лешательерит и др.) и метамиктные минералы, имеющие внешнюю форму кристаллов, но находящиеся в аморфном, стеклоподобном состоянии.

Генезис минералов

Минералы могут образовываться при разных условиях, в разных участках земной коры. Одни из них образуются из расплавленной магмы, которая может застывать как на глубине, так и на поверхности при вулканических извержениях, другие образуются на дне морей и океанов, озерах, болотах и других местах поверхности земли. При этом минералы при смене физико-химических условий могут меняться, превращаясь в другие. Процесс образования минералов принято называть генезисом минералов, что в переводе с греческого обозначает происхождение. Все процессы образования минералов могут быть разбиты на две большие группы: эндогенные (внутренние), происходящие за счет внутренней тепловой энергии земного шара; экзогенные (внешние), наблюдаемые на поверхности земли или вблизи от нее и происходящие за счет воздействия солнечной энергии. Особняком стоят эндогенные, так называемые метаморфические процессы, связанные с перерождением ранее образовавшихся минералов (как экзогенных так и эндогенных) в результате изменяющихся физико-химических условий, среди которых главное место занимают изменения давления и температуры.

1. Эндогенные процессы

Эндогенные процессы минералообразования, как правило, связаны с внедрением в земную кору и застыванием раскаленных подземных расплавов, называемых магмами. При этом эндогенное минералообразование протекает в три основных этапа: магматический, пегматитовый и постмагматический. На магматическом этапе минералообразование происходит за счет остывания магмы. Состав, возникающих при этом минеральных ассоциаций зависит от исходного химического состава магмы, который в основном определяется соотношением SiО2, Al2О, Fe2О3, FeO, MgO, СаО, Na2О, K2 и в меньшей степени TiO2, МnO2, OH, СO2, S, Cl, F.

В целом при магматическом минералообразовании возникает небольшое число главных минералов (оливин, пироксен, амфибол, мусковит, биотит, микроклин, ортоклаз, плагиоклазы, нефелин и кварц), что определяется некоторым однообразием состава магм. Считается, что различные по составу магматические расплавы возникают на разных глубинах земных недр, образуясь как в пределах верхней мантии, так и в пределах земной коры. Благодаря различию физических и химических свойств элементов в процессе остывания магматических расплавов в недрах Земли происходит их разделение (дифференциация), образуя скопления определенных химических элементов. При остывании так называемых основных магм, содержащих в своем составе менее 50 % SiO2, процесс разделения слагающих их веществ идет подобно выплавке чугуна в домне. При этом в застывающих на глубине скоплениях магмы кверху всплывают легкие минералы, а на дно магматической камеры опускаются тяжелые, образуя рудные магматические месторождения. Наиболее значительные из них месторождения железа и титана, хрома и платины, меди и никеля. Совершенно иначе обособляется компоненты рудных минералов при застывании так называемых кислых магм, содержащих более 50 % SiO2. Эти магмы обычно отличаются повышенным содержанием различных газов, в том числе и паров воды. Газы растворяют многие химические соединения, особенно металлические, и не дают им выпадать в осадок на ранних стадиях остывания магмы. Поэтому условия для их концентрации создаются в самых поздних, не успевших полностью отвердеть остатках магматических расплавов. Часть таких остаточных расплавов магмы, насыщенных горячими газами и растворенными в них ценными компонентами, дает начало следующим этапам эндогенного минералообразования (пегматитовому и постмагматическому). Пегматитовое минералообразование протекает в верхних частях магматических очагов в условиях высокого давления и богатства магмы летучими компонентами. Здесь возникают весьма своеобразные породы, называемые пегматитами. Под пегматитами обычно понимаются жилы и другие образования крупно- или гигантозернистого строения, сложенные в основном теми же минералами, что я горные породы, с которыми пегматиты связаны по своему происхождению. Пегматитовые тела нередко имеют зональное строение и тенденденцию к увеличению размеров минералов от периферии к центру. Часто в центральной части пегматитовых тел имеются полости, называемые эанорышами, в которых формируются крупные кристаллы мориона, ортоклаза, амазонита, аметиста, берилла и других минералов. Иногда такие кристаллы достигают гигантских размеров — до нескольких метров в длину и весом до нескольких десятков тонн. Наряду с главными породообразующими минералами — полевым шпатом и кварцем в пегматитах наблюдаются турмалин, мусковит, топаз, берилл, танталит, колумбит, сподумен, а также минералы, содержащие уран, торий, олово, вольфрам, редкоземельные элементы и др. Пегматитовые образования наблюдаются среди магматических пород различного состава, но наибольшее развитие и значение имеют пегматиты, связанные с гранитными и щелочными породами. На происхождение пегматитов нет единой точки зрения. С одной стороны, образование пегматитов тесно связано с магматическими процессами, а с другой — все они несут явственные следы интенсивных постмагматических преобразований. Соотношение и роль этих процессов при образовании пегматитов трактуется по-разному. По представлению А.Е.Ферсмана, они возникают вследствие раскристаллизации остаточного магматического расплава, обогащенного летучими компонентами, отжатого из магматического очага в трещины окружающих его горных пород. Иные представления предложены А.Н. Заварицким и развиты и дополнены затем В.Д. Никитиным и С.А. Руденко. Они считают, что остаточного расплава пегматитового состава не существует и пегматиты возникают вследствие перекристаллизации первичной материнской горной породы, происходящей за счет ее мощной переработки под действием горячих газо-водных растворов глубинного происхождения. С пегматитами связаны месторождения драгоценных и цветных камней, керамического сырья, а также редких элементов. Постмагматическое минералообразование завершает экзогенные процессы минералообразования. Магматические газы с растворенными в них компонентами не только накапливаются в остаточных очагах магмы, но также могут просачиваться через уже отвердевшие стенки, проникая во вмещающие породы. При этом между фильтрующимися раскаленными газами и окружающей горной породой могут возникать химические реакции. Особенно бурно они протекают между горячими магматическими газами и карбонатными породами. В ходе таких реакций по периферии массивов остывающих магматических пород в зоне их соприкосновения с карбонатами возникают так называемые скарны — породы состоящие из силикатов кальция, железа, магния и других элементов, образующие гранаты, пироксе-ны, актинолит, волластонит, эпидот, везувиан, карбонаты и кварц. Со скарнами часто бывают связаны месторождения железа, вольфрама, полиметаллов и других полезных ископаемых. При внедрении магмы в силикатные породы в контактовой зоне образуются грейзены. Грейзены, как правило, имеют зональное строение и состоят в основном из кварца, белой слюды, топаза, турмалина, берилла, флюорита и других минералов. Грейзены обычно сопровождают касситерит — вольфрамитово-кварцевые жилы или реже кварцевые жилы с молибденитом, арсенопиритом и висмутином. Но не все магматические флюиды реагируют на глубине с вмещающими породами. Большая их часть вследствие высокого давления устремляется по трещинам и порам горных пород к поверхности земли. При этом минерализованные пары постепенно охлаждаются, сжимаются и превращаются в горячие водные растворы — гидротермы. Гидротермы также могут возникнуть и за счет метеорных вод глубинной циркуляции. Эти растворы очень подвижны и заполняют трещины, формируя жилы, залежи и неправильные скопления гидротермальных минералов. Образование минералов в них находится в тесной зависимости от температуры. Для основных типов гидротермальных образований приняты следующие названия в соответствии с температурными пределами минералообразования: от 300 до 500°С — высокотемпературные (гипотермальные); от 150 до 350°С — среднетемпературные (мезотермальные); от 40 до 200°С — низкотемпературные (эпитермальные). Минеральный состав гидротермальных образований крайне разнообразен. В подавляющем большинстве они представлены массами кварца, которые включают в себя скопления разнообразных минералов, среди которых чаще всего преобладают сернистые соединения металлов. Принято различать жильные и рудные минералы гидротермальных систем. К жильным относятся соединения нерудных компонентов, обычно резко преобладающим в гидротермальной системе, а к рудным — минералы образующие руды. В высокотемпературных образованиях главным жильным минералом является кварц, с которым ассоциируют слюды, турмалин, касситерит, вольфрамит, висмутин и другие минералы. В среднетемпературных образованиях наиболее часты кварц, кальцит, барит, сидерит и доломит, с ними ассоциируют золото, галенит, сфалерит и борнит, а также и другие минералы. В низкотемпературных образованиях среди жильных минералов обычно встречается кварц (иногда в виде опала) с флюоритом, баритом и карбонатами, рудные минералы представлены здесь марказитом, самородным серебром, сульфосолями серебра, киноварью, антимонитом, реальгаром и аурипигментом. Между этими тремя генетическими типами наблюдаются постепенные переходы, при этом количество и соотношения минералов могут быть самые разнообразные. Некоторые гидротермальные жилы слагаются лишь одним минералом (например, жилы галенита в известняках), другие состоят из нескольких десятков минералов. Минералы могут последовательно заполнять открытые трещины или полости или могут образовываться за счет постепенного замещения окружающих горных пород. Такое замещение называется метасоматозом и наблюдается как в виде метасоматических жил, так и в виде метасоматических залежей.