Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Jack H.Dynamic system modeling and control.2004.pdf
Скачиваний:
73
Добавлен:
23.08.2013
Размер:
5.61 Mб
Скачать

Copyright © 1993-2001, Hugh Jack

page 1

Dynamic System Modeling

and Control

by

Hugh Jack

(Draft Version 2.6, December 20, 2004)

© Copyright 1993-2004 Hugh Jack

page 1

PREFACE

How to use the book.

read the chapters and do drill problems as you read

examine the case studies - these pull together concepts from previous chapters

problems at the ends of chapters are provided for further practice

Tools that should be used include,

graphing calculator that can solve differential equations, such as a TI-85

computer algebra software that can solve differential equations, such as Scilab

Supplemental materials at the end of this book include,

a writing guide

a summary of math topics important for engineers

a table of generally useful engineering units

properties of common materials

Acknowledgement to,

Dr. Hal Larson for reviewing the calculus and numerical methods chapters Dr. Wendy Reffeor for reviewing the translation chapter

Student background

a basic circuits course

a basic statics and mechanics of materials course math up to differential equations

a general knowledge of physics computer programming, preferably in ’C’

Special notes

- despite all common wisdom, inertia is presented as a force, this makes it easier for students attempting to learn, and keep sign conventions correct

TO BE DONE

small

italicize variables and important terms

fix equation numbering (auto-numbering?) fix subscripts and superscripts

fix problem forms to include therefores, mark FBDs, etc. check C programs for ANSI compliance

big

verify the phase angle relationships cos vs/ sin.

page 2

chapter rotation

replace the rotational case with IC motor chapter non-linear systems

develop chapter chapter magnetic

consider adding/writing this chapter chapter fluids

consider adding/writing this chapter chapter thermal

consider adding/writing this chapter chapter c programming

review section add problems

Buzzword topics:

-Distributed systems

-Intelligent manufacturing systems

-Adaptive control

-Architectures for signal processing and control algorithms

-Discrete event systems

-Hybrid systems

-Predictive control

-Robust control

page 1

1.INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1

1.1

BASIC TERMINOLOGY

1.1

1.2

EXAMPLE SYSTEM

1.3

1.3

SUMMARY

1.3

1.4

PRACTICE PROBLEMS

1.3

2.TRANSLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1

2.1

INTRODUCTION

2.1

2.2

MODELING

2.3

 

2.2.1

Free Body Diagrams

2.4

 

2.2.2

Mass and Inertia

2.4

 

2.2.3

Gravity and Other Fields

2.8

 

2.2.4

Springs

2.10

 

2.2.5

Damping and Drag

2.18

 

2.2.6

Cables And Pulleys

2.21

 

2.2.7

Friction

2.23

 

2.2.8

Contact Points And Joints

2.25

2.3

SYSTEM EXAMPLES

2.25

2.4

OTHER TOPICS

2.35

2.5

SUMMARY

2.36

2.6

PRACTICE PROBLEMS

2.36

2.7

PRACTICE PROBLEM SOLUTIONS

2.41

2.8

ASSIGNMENT PROBLEMS

2.45

3.ANALYSIS OF DIFFERENTIAL EQUATIONS . . . . . . . . . . . . 3.1

3.1

INTRODUCTION

3.1

3.2

EXPLICIT SOLUTIONS

3.2

3.3

RESPONSES

3.16

 

3.3.1

First-order

3.17

 

3.3.2

Second-order

3.23

 

3.3.3

Other Responses

3.28

3.4

RESPONSE ANALYSIS

3.31

3.5

NON-LINEAR SYSTEMS

3.33

 

3.5.1

Non-Linear Differential Equations

3.34

 

3.5.2

Non-Linear Equation Terms

3.38

 

3.5.3

Changing Systems

3.41

3.6

CASE STUDY

3.47

3.7

SUMMARY

3.51

3.8

PRACTICE PROBLEMS

3.51

3.9

PRACTICE PROBLEM SOLUTIONS

3.56

3.10

ASSIGNMENT PROBLEMS

3.61

4.

NUMERICAL ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1

 

 

page 2

 

4.1

INTRODUCTION

4.1

4.2

THE GENERAL METHOD

4.1

 

4.2.1

State Variable Form

4.2

4.3

NUMERICAL INTEGRATION

4.10

 

4.3.1

Numerical Integration With Tools

4.10

 

4.3.2

Numerical Integration

4.15

 

4.3.3

Taylor Series

4.21

 

4.3.4

Runge-Kutta Integration

4.23

4.4

SYSTEM RESPONSE

4.29

 

4.4.1

Steady-State Response

4.30

4.5DIFFERENTIATION AND INTEGRATION OF EXPERIMENTAL

DATA 4.31

 

 

 

4.6

ADVANCED TOPICS

4.33

 

4.6.1

Switching Functions

4.33

 

4.6.2

Interpolating Tabular Data

4.36

 

4.6.3

Modeling Functions with Splines

4.37

 

4.6.4

Non-Linear Elements

4.39

4.7

CASE STUDY

4.39

4.8

SUMMARY

4.46

4.9

PRACTICE PROBLEMS

4.47

4.10

PRACTICE PROBLEM SOLUTIONS

4.50

4.11

ASSIGNMENT PROBLEMS

4.60

5.ROTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1

5.1

INTRODUCTION

5.1

5.2

MODELING

5.2

 

5.2.1

Inertia

5.3

 

5.2.2

Springs

5.7

 

5.2.3

Damping

5.12

 

5.2.4

Levers

5.14

 

5.2.5

Gears and Belts

5.15

 

5.2.6

Friction

5.19

 

5.2.7

Permanent Magnet Electric Motors

5.22

5.3

OTHER TOPICS

5.23

5.4

DESIGN CASE

5.23

5.5

SUMMARY

5.28

5.6

PRACTICE PROBLEMS

5.28

5.7

PRACTICE PROBLEM SOLUTIONS

5.35

5.8

ASSIGNMENT PROBLEMS

5.44

6.INPUT-OUTPUT EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . 6.1

6.1

INTRODUCTION

6.1

6.2

THE DIFFERENTIAL OPERATOR

6.1

6.3

INPUT-OUTPUT EQUATIONS

6.4

 

 

page 3

 

 

6.3.1

Converting Input-Output Equations to State Equations

6.6

 

6.3.2

Integrating Input-Output Equations

6.9

6.4

DESIGN CASE

6.11

6.5

SUMMARY

6.20

6.6

PRACTICE PROBLEMS

6.20

6.7

PRACTICE PROBLEM SOLUTIONS

6.22

6.8

ASSGINMENT PROBLEMS

6.26

6.9

REFERENCES

6.27

7.ELECTRICAL SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1

7.1

INTRODUCTION

7.1

7.2

MODELING

7.1

 

7.2.1

Resistors

7.2

 

7.2.2

Voltage and Current Sources

7.4

 

7.2.3

Capacitors

7.8

 

7.2.4

Inductors

7.10

 

7.2.5

Op-Amps

7.11

7.3

IMPEDANCE

7.16

7.4

EXAMPLE SYSTEMS

7.18

7.5

ELECTROMECHANICAL SYSTEMS - MOTORS

7.26

 

7.5.1

Permanent Magnet DC Motors

7.26

 

7.5.2

Induction Motors

7.28

 

7.5.3

Brushless Servo Motors

7.29

7.6

FILTERS

7.32

7.7

OTHER TOPICS

7.33

7.8

SUMMARY

7.33

7.9

PRACTICE PROBLEMS

7.34

7.10

PRACTICE PROBLEM SOLUTIONS

7.38

7.11

ASSIGNMENT PROBLEMS

7.43

8.FEEDBACK CONTROL SYSTEMS . . . . . . . . . . . . . . . . . . . . . . 8.1

8.1

INTRODUCTION

8.1

8.2

TRANSFER FUNCTIONS

8.1

8.3

CONTROL SYSTEMS

8.3

 

8.3.1

PID Control Systems

8.5

 

8.3.2

Manipulating Block Diagrams

8.7

 

8.3.3

A Motor Control System Example

8.12

 

8.3.4

System Error

8.17

 

8.3.5

Controller Transfer Functions

8.21

 

8.3.6

Feedforward Controllers

8.21

 

8.3.7

State Equation Based Systems

8.22

 

8.3.8

Cascade Controllers

8.24

8.4

SUMMARY

8.24

8.5

PRACTICE PROBLEMS

8.24

 

 

 

page 4

 

 

8.6

PRACTICE PROBLEM SOLUTIONS

8.31

 

8.7

ASSIGNMENT PROBLEMS

8.37

9.

PHASOR ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 9.1

 

9.1

INTRODUCTION

9.1

 

9.2

PHASORS FOR STEADY-STATE ANALYSIS

9.1

 

9.3

VIBRATIONS

9.8

 

9.4

SUMMARY

9.10

 

9.5

PRACTICE PROBLEMS

9.10

 

9.6

PRACTICE PROBLEM SOLUTIONS

9.12

 

9.7

ASSIGNMENT PROBLEMS

9.14

10.

BODE PLOTS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.1

 

10.1

INTRODUCTION

10.1

 

10.2

BODE PLOTS

10.5

 

10.3

SIGNAL SPECTRUMS

10.21

 

10.4

SUMMARY

10.22

 

10.5

PRACTICE PROBLEMS

10.22

 

10.6

PRACTICE PROBLEM SOLUTIONS

10.25

 

10.7

ASSIGNMENT PROBLEMS

10.35

 

10.8

LOG SCALE GRAPH PAPER

10.36

11.

ROOT LOCUS ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.1

 

11.1

INTRODUCTION

11.1

 

11.2

ROOT-LOCUS ANALYSIS

11.1

 

11.3

SUMMARY

11.10

 

11.4

PRACTICE PROBLEMS

11.11

 

11.5

PRACTICE PROBLEM SOLUTIONS

11.14

 

11.6

ASSIGNMENT PROBLEMS

11.25

12.

NONLINEAR SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.1

 

12.1

INTRODUCTION

12.1

 

12.2

SOURCES OF NONLINEARITY

12.1

 

 

12.2.1

Non-Linear Relationships

12.1

 

12.3

NON-LINEAR ELEMENTS

12.2

 

 

12.3.1

Time Variant

12.3

 

 

12.3.2

Switching

12.3

 

 

12.3.3

Deadband

12.4

 

 

12.3.4

Saturation and Clipping

12.7

 

 

12.3.5

Hysteresis and Slip

12.7

 

 

12.3.6

Delays and Lags

12.8

 

12.4

SUMMARY

12.9

 

12.5

PRACTICE PROBLEMS

12.9

 

page 5

 

12.6

PRACTICE PROBLEM SOLUTIONS

12.9

12.7

ASIGNMENT PROBLEMS

12.9

13.ANALOG INPUTS AND OUTPUTS . . . . . . . . . . . . . . . . . . . . 13.1

13.1

INTRODUCTION

13.1

13.2

ANALOG INPUTS

13.3

13.3

ANALOG OUTPUTS

13.10

13.4

NOISE REDUCTION

13.12

 

13.4.1

Shielding

13.12

 

13.4.2

Grounding

13.14

13.5

CASE STUDY

13.15

13.6

SUMMARY

13.15

13.7

PRACTICE PROBLEMS

13.15

13.8

PRACTICE PROBLEM SOLUTIONS

13.15

13.9

ASSIGNMENT PROBLEMS

13.16

14.CONTINUOUS SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1

14.1

INTRODUCTION

14.1

14.2

INDUSTRIAL SENSORS

14.2

 

14.2.1

Angular Displacement

14.3

 

 

Potentiometers

14.3

 

14.2.2

Encoders

14.4

 

 

Tachometers

14.8

 

14.2.3

Linear Position

14.8

 

 

Potentiometers

14.8

 

 

Linear Variable Differential Transformers (LVDT)14.9

 

 

Moire Fringes

14.11

 

 

Accelerometers

14.12

 

14.2.4

Forces and Moments

14.15

 

 

Strain Gages

14.15

 

 

Piezoelectric

14.18

 

14.2.5

Liquids and Gases

14.20

 

 

Pressure

14.21

 

 

Venturi Valves

14.22

 

 

Coriolis Flow Meter

14.23

 

 

Magnetic Flow Meter

14.24

 

 

Ultrasonic Flow Meter

14.24

 

 

Vortex Flow Meter

14.24

 

 

Positive Displacement Meters

14.25

 

 

Pitot Tubes

14.25

 

14.2.6

Temperature

14.25

 

 

Resistive Temperature Detectors (RTDs)

14.26

 

 

Thermocouples

14.26

 

 

Thermistors

14.28

 

 

Other Sensors

14.30

 

 

page 6

 

 

14.2.7

Light

14.30

 

 

Light Dependant Resistors (LDR)

14.30

 

14.2.8

Chemical

14.31

 

 

pH

14.31

 

 

Conductivity

14.31

 

14.2.9

Others

14.32

14.3

INPUT ISSUES

14.32

14.4

SENSOR GLOSSARY

14.37

14.5

SUMMARY

14.38

14.6

REFERENCES

14.39

14.7

PRACTICE PROBLEMS

14.39

14.8

PRACTICE PROBLEM SOLUTIONS

14.40

14.9

ASSIGNMENT PROBLEMS

14.42

15.CONTINUOUS ACTUATORS . . . . . . . . . . . . . . . . . . . . . . . . . 15.1

15.1

INTRODUCTION

15.1

15.2

ELECTRIC MOTORS

15.1

 

15.2.1 Basic Brushed DC Motors

15.3

 

15.2.2

AC Motors

15.7

 

15.2.3

Brushless DC Motors

15.15

 

15.2.4

Stepper Motors

15.17

 

15.2.5

Wound Field Motors

15.19

15.3

HYDRAULICS

15.23

15.4

OTHER SYSTEMS

15.24

15.5

SUMMARY

15.25

15.6

PRACTICE PROBLEMS

15.25

15.7

PRACTICE PROBLEM SOLUTIONS

15.26

15.8

ASSIGNMENT PROBLEMS

15.26

16.MOTION CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1

16.1

INTRODUCTION

16.1

16.2

MOTION PROFILES

16.2

 

16.2.1

Velocity Profiles

16.2

 

16.2.2

Position Profiles

16.11

16.3

MULTI AXIS MOTION

16.14

 

16.3.1

Slew Motion

16.15

 

 

Interpolated Motion

16.16

 

16.3.2

Motion Scheduling

16.17

16.4

PATH PLANNING

16.19

16.5

CASE STUDIES

16.21

16.6

SUMMARY

16.23

16.7

PRACTICE PROBLEMS

16.23

16.8

PRACTICE PROBLEM SOLUTIONS

16.24

16.9

ASSIGNMENT PROBLEMS

16.25

page 7

17.LAPLACE TRANSFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.1

17.1

INTRODUCTION

17.1

17.2

APPLYING LAPLACE TRANSFORMS

17.3

 

17.2.1

A Few Transform Tables

17.4

17.3

MODELING TRANSFER FUNCTIONS IN THE s-DOMAIN

17.9

17.4

FINDING OUTPUT EQUATIONS

17.11

17.5

INVERSE TRANSFORMS AND PARTIAL FRACTIONS

17.14

17.6

EXAMPLES

17.21

 

17.6.1

Mass-Spring-Damper Vibration

17.21

 

17.6.2

Circuits

17.23

17.7

ADVANCED TOPICS

17.25

 

17.7.1

Input Functions

17.25

 

17.7.2

Initial and Final Value Theorems

17.26

17.8

A MAP OF TECHNIQUES FOR LAPLACE ANALYSIS

17.27

17.9

SUMMARY

17.28

17.10

PRACTICE PROBLEMS

17.28

17.11

PRACTICE PROBLEM SOLUTIONS

17.31

17.12

ASSIGNMENT PROBLEMS

17.35

17.13

REFERENCES

17.37

18.CONTROL SYSTEM ANALYSIS . . . . . . . . . . . . . . . . . . . . . . 18.1

18.1

INTRODUCTION

18.1

18.2

CONTROL SYSTEMS

18.1

 

18.2.1

PID Control Systems

18.3

 

18.2.2

Analysis of PID Controlled Systems With Laplace Transforms

18.5

 

 

 

 

18.2.3

Finding The System Response To An Input

18.8

 

18.2.4

Controller Transfer Functions

18.13

18.3

ROOT-LOCUS PLOTS

18.13

 

18.3.1

Approximate Plotting Techniques

18.17

18.4

DESIGN OF CONTINUOUS CONTROLLERS

18.21

18.5

SUMMARY

18.21

18.6

PRACTICE PROBLEMS

18.22

18.7

PRACTICE PROBLEM SOLUTIONS

18.27

18.8

ASSIGNMENT PROBLEMS

18.27

19.CONVOLUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.1

19.1

INTRODUCTION

19.1

19.2

UNIT IMPULSE FUNCTIONS

19.1

19.3

IMPULSE RESPONSE

19.3

19.4

CONVOLUTION

19.5

19.5

NUMERICAL CONVOLUTION

19.6

19.6

LAPLACE IMPULSE FUNCTIONS

19.9

 

page 8

 

19.7

SUMMARY

19.10

19.8

PRACTICE PROBLEMS

19.10

19.9

PRACTICE PROBLEM SOLUTIONS

19.10

19.10

ASSIGNMENT PROBLEMS

19.10

20.STATE SPACE ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.1

20.1

INTRODUCTION

20.1

20.2

OBSERVABILITY

20.13

20.3

CONTROLLABILITY

20.15

20.4

OBSERVERS

20.18

20.5

SUMMARY

20.18

20.6

PRACTICE PROBLEMS

20.19

20.7

PRACTICE PROBLEM SOLUTIONS

20.19

20.8

ASSIGNMENT PROBLEMS

20.19

20.9

BIBLIOGRAPHY

20.19

21.STATE SPACE CONTROLLERS . . . . . . . . . . . . . . . . . . . . . . . 21.1

21.1

INTRODUCTION

21.1

21.2

FULL STATE FEEDBACK

21.2

21.3

OBSERVERS

21.5

21.4

SUPPLEMENTAL OBSERVERS

21.11

21.5

REGULATED CONTROL WITH OBSERVERS

21.11

21.6

LQR

21.22

21.7LINEAR QUADRATIC GAUSSIAN (LQG) COMPENSATORS 21.24

21.8

VERIFYING CONTROL SYSTEM STABILITY

21.24

 

21.8.1

Stability

21.25

 

21.8.2

Bounded Gain

21.26

21.9

ADAPTIVE CONTROLLERS

21.28

21.10

OTHER METHODS

21.31

 

21.10.1

Kalman Filtering

21.32

21.11

SUMMARY

21.32

21.12

PRACTICE PROBLEMS

21.33

21.13

PRACTICE PROBLEM SOLUTIONS

21.33

21.14

ASSIGNMENT PROBLEMS

21.33

22.SYSTEM IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . 22.1

22.1

INTRODUCTION

22.1

22.2

SUMMARY

22.10

22.3

PRACTICE PROBLEMS

22.10

22.4

PRACTICE PROBLEM SOLUTIONS

22.10

22.5

ASSIGNMENT PROBLEMS

22.10

23.ELECTROMECHANICAL SYSTEMS . . . . . . . . . . . . . . . . . . . 23.1

 

page 9

 

23.1

INTRODUCTION

23.1

23.2

MATHEMATICAL PROPERTIES

23.1

 

23.2.1 Induction

23.1

23.3

EXAMPLE SYSTEMS

23.9

23.4

SUMMARY

23.16

23.5

PRACTICE PROBLEMS

23.16

23.6

PRACTICE PROBLEM SOLUTIONS

23.16

23.7

ASSIGNMENT PROBLEMS

23.16

24.FLUID SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.1

24.1

SUMMARY

24.1

24.2

MATHEMATICAL PROPERTIES

24.1

 

24.2.1

Resistance

24.2

 

24.2.2

Capacitance

24.4

 

24.2.3

Power Sources

24.6

24.3

EXAMPLE SYSTEMS

24.8

24.4

SUMMARY

24.10

24.5

PRACTICE PROBLEMS

24.10

24.6

PRACTICE PROBLEMS SOLUTIONS

24.10

24.7

ASSIGNMENT PROBLEMS

24.10

25.THERMAL SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.1

25.1

INTRODUCTION

25.1

25.2

MATHEMATICAL PROPERTIES

25.1

 

25.2.1

Resistance

25.1

 

25.2.2

Capacitance

25.3

 

25.2.3

Sources

25.4

25.3

EXAMPLE SYSTEMS

25.4

25.4

SUMMARY

25.7

25.5

PRACTICE PROBLEMS

25.7

25.6

PRACTICE PROBLEM SOLUTIONS

25.7

25.7

ASSIGNMENT PROBLEMS

25.7

26.OPTIMIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.1

26.1

INTRODUCTION

26.1

26.2

OBJECTIVES AND CONSTRAINTS

26.2

26.3

SEARCHING FOR THE OPTIMUM

26.6

26.4

OPTIMIZATION ALGORITHMS

26.9

 

26.4.1

Random Walk

26.9

 

26.4.2

Gradient Decent

26.10

 

26.4.3

Simplex

26.10

26.5

SUMMARY

26.10

26.6

PRACTICE PROBLEMS

26.10

26.7

PRACTICE PROBLEM SOLUTIONS

26.10

page 10

26.8

ASSIGNMENT PROBLEMS

26.10

27. FINITE ELEMENT ANALYSIS (FEA) . . . . . . . . . . . . . . . . . . . 27.1

27.1

INTRODUCTION

27.1

27.2

FINITE ELEMENT MODELS

27.2

27.3

FINITE ELEMENT MODELS

27.4

27.4

SUMMARY

27.12

27.5

PRACTICE PROBLEMS

27.13

27.6

PRACTICE PROBLEM SOLUTIONS

27.13

27.7

ASSIGNMENT PROBLEMS

27.13

27.8

BIBLIOGRAPHY

27.13

28. FUZZY LOGIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.1

28.1

INTRODUCTION

28.1

28.2

COMMERCIAL CONTROLLERS

28.7

28.3

REFERENCES

28.7

28.4

SUMMARY

28.7

28.5

PRACTICE PROBLEMS

28.8

28.6

PRACTICE PROBLEM SOLUTIONS

28.8

28.7

ASSIGNMENT PROBLEMS

28.8

29. NEURAL NETWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.1

29.1

SUMMARY

29.9

29.2

PRACTICE PROBLEMS

29.10

29.3

PRACTICE PROBLEM SOLUTIONS

29.10

29.4

ASSIGNMENT PROBLEMS

29.10

29.5

REFERENCES

29.10

30. EMBEDDED CONTROL SYSTEM . . . . . . . . . . . . . . . . . . . . . 30.1

30.1

INTRODUCTION

30.1

30.2

CASE STUDY

30.3

30.3

SUMMARY

30.3

30.4

PRACTICE PROBLEMS

30.3

30.5

PRACTICE PROBLEM SOLUTIONS

30.3

30.6

ASSIGNMENT PROBLEMS

30.3

31. WRITING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1

31.1

FORGET WHAT YOU WERE TAUGHT BEFORE

31.1

31.2

WHY WRITE REPORTS?

31.2

31.3

THE TECHNICAL DEPTH OF THE REPORT

31.3

31.4

TYPES OF REPORTS

31.3

31.5

LABORATORY REPORTS

31.3

 

An Example First Draft of a Report

31.5

 

 

page 11

 

 

 

An Example Final Draft of a Report

31.11

31.6

RESEARCH

31.11

31.7

DRAFT REPORTS

31.11

31.8

PROJECT REPORT

31.12

31.9

OTHER REPORT TYPES

31.13

 

31.9.1

Executive

31.13

 

31.9.2

Consulting

31.13

 

31.9.3

Memo(randum)

31.13

 

31.9.4

Interim

31.14

 

31.9.5

Poster

31.14

 

31.9.6

Progress Report

31.14

 

31.9.7

Oral

31.15

 

31.9.8

Patent

31.15

31.10

LAB BOOKS

31.16

31.11

REPORT ELEMENTS

31.16

 

31.11.1

Figures

31.17

 

31.11.2

Graphs

31.18

 

31.11.3

Tables

31.19

 

31.11.4

Equations

31.19

 

31.11.5

Experimental Data

31.20

 

31.11.6

Result Summary

31.21

 

31.11.7

References

31.21

 

31.11.8

Acknowledgments

31.21

 

31.11.9

Abstracts

31.22

 

31.11.10

Appendices

31.22

 

31.11.11

Page Numbering

31.23

 

31.11.12

Numbers and Units

31.23

 

31.11.13

Engineering Drawings

31.23

 

31.11.14

Discussions

31.24

 

31.11.15

Conclusions

31.24

 

31.11.16

Recomendations

31.24

 

31.11.17

Appendices

31.25

 

31.11.18

Units

31.25

31.12

GENERAL WRITING ISSUES

31.25

31.13

WRITERS BLOCK

31.26

31.14

TECHNICAL ENGLISH

31.26

31.15

EVALUATION FORMS

31.29

31.16

PATENTS

31.31

32.PROJECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.1

32.1

 

 

32.1

32.2

OVERVIEW

32.1

 

32.2.1

The Objectives and Constraints

32.2

32.3

MANAGEMENT

32.3

 

32.3.1

Timeline - Tentative

32.3

 

 

page 12

 

 

32.3.2

Teams

32.4

32.4

DELIVERABLES

32.5

 

32.4.1

Conceptual Design

32.5

 

32.4.2

EGR 345/101 Contract

32.5

 

32.4.3

Progress Reports

32.6

 

32.4.4

Design Proposal

32.6

 

32.4.5

The Final Report

32.7

32.5

REPORT ELEMENTS

32.8

 

32.5.1

Gantt Charts

32.8

 

32.5.2

Drawings

32.9

 

32.5.3

Budgets and Bills of Material

32.9

 

32.5.4

Calculations

32.10

32.6

APPENDICES

32.10

 

32.6.1

Appendix A - Sample System

32.10

 

32.6.2

Appendix B - EGR 345/101 Contract

32.18

 

32.6.3

Appendix C - Forms

32.19

33.ENGINEERING PROBLEM SOLVING . . . . . . . . . . . . . . . . . . 33.1

33.1

BASIC RULES OF STYLE

33.1

33.2

EXPECTED ELEMENTS

33.1

33.3

SEPCIAL ELEMENTS

33.2

 

33.3.1

Graphs

33.2

 

33.3.2

EGR 345 Specific

33.2

33.4

SCILAB

 

33.2

33.5

TERMINOLOGY

33.3

34.MATHEMATICAL TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34.1

34.1

INTRODUCTION

34.1

 

34.1.1

Constants and Other Stuff

34.2

 

34.1.2

Basic Operations

34.3

 

 

Factorial

34.4

 

34.1.3

Exponents and Logarithms

34.4

 

34.1.4

Polynomial Expansions

34.5

 

34.1.5

Practice Problems

34.6

34.2

FUNCTIONS

34.9

 

34.2.1

Discrete and Continuous Probability Distributions

34.9

 

34.2.2

Basic Polynomials

34.9

 

34.2.3

Partial Fractions

34.11

 

34.2.4

Summation and Series

34.14

 

34.2.5

Practice Problems

34.16

34.3

SPATIAL RELATIONSHIPS

34.17

 

34.3.1

Trigonometry

34.17

 

34.3.2

Hyperbolic Functions

34.22

 

 

Practice Problems

34.23

 

34.3.3

Geometry

34.24

 

 

page 13

 

 

34.3.4

Planes, Lines, etc.

34.41

 

34.3.5

Practice Problems

34.43

34.4

COORDINATE SYSTEMS

34.45

 

34.4.1

Complex Numbers

34.45

 

34.4.2

Cylindrical Coordinates

34.48

 

34.4.3

Spherical Coordinates

34.49

 

34.4.4

Practice Problems

34.50

34.5

MATRICES AND VECTORS

34.51

 

34.5.1

Vectors

34.51

 

34.5.2

Dot (Scalar) Product

34.52

 

34.5.3

Cross Product

34.57

 

34.5.4

Triple Product

34.59

 

34.5.5

Matrices

34.59

 

34.5.6

Solving Linear Equations with Matrices

34.64

 

34.5.7

Practice Problems

34.65

34.6

CALCULUS

34.70

 

34.6.1

Single Variable Functions

34.70

 

 

Differentiation

34.70

 

 

Integration

34.73

 

34.6.2

Vector Calculus

34.77

 

34.6.3

Differential Equations

34.79

 

 

First-order Differential Equations

34.80

 

 

Guessing

34.81

 

 

Separable Equations

34.81

 

 

Homogeneous Equations and Substitution

34.82

 

 

Second-order Differential Equations

34.83

 

 

Linear Homogeneous

34.83

 

 

Nonhomogeneous Linear Equations

34.84

 

 

Higher Order Differential Equations

34.86

 

 

Partial Differential Equations

34.86

 

34.6.4

Other Calculus Stuff

34.87

 

34.6.5

Practice Problems

34.87

34.7

NUMERICAL METHODS

34.93

34.7.1Approximation of Integrals and Derivatives from Sampled Data

34.93

 

34.7.2

Euler First-order Integration

34.94

 

34.7.3

Taylor Series Integration

34.94

 

34.7.4

Runge-Kutta Integration

34.95

 

34.7.5

Newton-Raphson to Find Roots

34.95

34.8

LAPLACE TRANSFORMS

34.96

 

34.8.1

Laplace Transform Tables

34.96

34.9

z-TRANSFORMS

34.99

34.10

FOURIER SERIES

34.102

34.11

TOPICS NOT COVERED (YET)

34.102

34.12

REFERENCES/BIBLIOGRAPHY

34.103

page 14

35.A BASIC INTRODUCTION TO ‘C’ . . . . . . . . . . . . . . . . . . . . . 35.1

35.1

WHY USE ‘C’?

35.1

35.2

BACKGROUND

35.2

35.3

PROGRAM PARTS

35.2

35.4

HOW A ‘C’ COMPILER WORKS

35.11

35.5

STRUCTURED ‘C’ CODE

35.13

35.6

ARCHITECTURE OF ‘C’ PROGRAMS (TOP-DOWN)

35.14

 

35.6.1

How?

35.14

 

35.6.2

Why?

35.15

35.7

CREATING TOP DOWN PROGRAMS

35.16

35.8

HOW THE BEAMCAD PROGRAM WAS DESIGNED

35.17

 

35.8.1

Objectives:

35.18

 

35.8.2

Problem Definition:

35.18

 

35.8.3

User Interface:

35.18

 

 

Screen Layout (also see figure):

35.18

 

 

Input:

35.19

 

 

Output:

35.20

 

 

Help:

35.20

 

 

Error Checking:

35.20

 

 

Miscellaneous:

35.21

 

35.8.4

Flow Program:

35.22

 

35.8.5

Expand Program:

35.22

 

35.8.6

Testing and Debugging:

35.24

 

35.8.7

Documentation

35.25

 

 

Users Manual:

35.25

 

 

Programmers Manual:

35.26

 

35.8.8 Listing of BeamCAD Program.

35.26

35.9

PRACTICE PROBLEMS

35.26

36.UNITS AND CONVERSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 36.1

36.1

HOW TO USE UNITS

36.1

36.2

HOW TO USE SI UNITS

36.2

36.3

THE TABLE

36.2

36.4

ASCII, HEX, BINARY CONVERSION

36.6

36.5

G-CODES

36.8

37.ATOMIC MATERIAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . 37.1

37.MECHANICAL MATERIAL PROPERTIES . . . . . . . . . . . . . . 37.1

37.1

FORMULA SHEET

37.4

38.BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.1

38.1

TEXTBOOKS

38.1

 

38.1.1

Slotine and Li

38.1

page 15

38.1.2

VandeVegte

38.1

39.TOPICS IN DEVELOPMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 39.1

39.1

UPDATED DC MOTOR MODEL

39.1

39.2

ANOTHER DC MOTOR MODEL

39.4

39.3

BLOCK DIAGRAMS AND UNITS

39.8

39.4

SIGNAL FLOW GRAPHS

39.9

39.5

ZERO ORDER HOLD

39.9

39.6

TORSIONAL DAMPERS

39.9

39.7

MISC

39.10

39.8

Nyquist Plot

39.10

39.9

NICHOLS CHART

39.12

39.10

BESSEL POLYNOMIALS

39.14

39.11

ITAE

39.15

39.12

ROOT LOCUS

39.16

39.13

LYAPUNOV’S LINEARIZATION METHOD

39.16

39.14

XXXXX

39.17

39.15

XXXXX

39.18

39.16

XXXXX

39.18

39.17

XXXXX

39.18

39.18

XXXXX

39.18

39.19

XXXXX

39.18

39.20

XXXXX

39.18

39.21

SUMMARY

39.18

39.22

PRACTICE PROBLEMS

39.18

39.23

PRACTICE PROBLEM SOLUTIONS

39.19

39.24

ASSGINMENT PROBLEMS

39.19

39.25

REFERENCES

39.19

39.26

BIBLIOGRAPHY

39.19

introduction - 1.1

1. INTRODUCTION

Topics:

Objectives:

1.1BASIC TERMINOLOGY

Modeling

Explicit solutions

Numerical solutions

Empirical data

Simulation

Lumped parameter (masses and springs)

Distributed parameters (stress in a solid)

Continuous vs. Discrete

Linear vs. Non-linear

introduction - 1.2

linearity and superposition

reversibility

through and across variables

Analog vs. Digital

process vs. controllers

Basic system categories below,

Static

Dynamic Stochastic

Deterministic Distributed

Lumped Non-linear

Linear Continuous

Discrete

Figure 1.1 Model Classifications

introduction - 1.3

control system types: servo vs. regulating/process control

open loop vs. closed loop

disturbances

component variations

system error

analysis vs. design

mechatronics

embedded systems

real-time systems

1.2EXAMPLE SYSTEM

Servo control systems

Robot

1.3SUMMARY

1.4 PRACTICE PROBLEMS

1.