Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОПТИКА.doc
Скачиваний:
99
Добавлен:
01.06.2015
Размер:
472.58 Кб
Скачать
  1. На мыльную пленку, находящуюся на поверхности масла, падает нормально белый свет. Определить (в нм) наименьшую толщину пленки, при которой она будет казаться желтой, если наблюдение ведется в отраженном свете. Показатели преломления мыльной пленки 1.33, масла 1.5, длина волны желтого света 610–7 м.

  2. На сколько длин волн изменяется оптическая разность хода интерферирующих лучей при переходе от середины одной интерференционной полосы к середине соседней полосы?

  3. Определить (в нм) длину волны монохроматического излучения, если в опыте Юнга расстояние от середины центральной полосы до середины первого интерференционного максимума равно 0.5 мм, расстояние между щелями 0.5 см. Экран расположен на расстоянии 5 м от щелей.

  4. На тонкую пленку с показателем преломления 1.6 нормально падает белый свет. Определить (в нм) наименьшую толщину пленки, при которой она в отраженном свете будет казаться зеленой. Длина волны зеленого света 560 нм.

  5. На мыльную пленку, находящуюся на поверхности масла, падает нормально белый свет. Определить (в нм) наименьшую толщину пленки, при которой она будет казаться желтой, если наблюдение ведется в отраженном свете. Показатели преломления мыльной пленки 1.33, масла 1.5, длина волны желтого света 610–7 м.

  6. Зонная пластинка дает изображение источника, удаленного от нее на 3 м, на расстоянии 2 м от своей поверхности. На каком расстоянии от пластинки получится изображение источника, если его отодвинуть в бесконечность?

  7. Параллельный пучок рентгеновского излучения падает на грань кристалла. Под углом 65 к плоскости грани наблюдается максимум третьего порядка. Расстояние между атомными плоскостями кристалла 280 пм. Определить (в пм) длину волны рентгеновского излучения.

  8. Луч лазера, генерирующего излучение с длиной волны 600 нм, нормально падает на непрозрачный экран с круглым отверстием, представляющим собой первую зону Френеля для точки наблюдения P. Половину отверстия (по диаметру) перекрыли стеклянной пластинкой толщиной 5 мкм. Найти отношение интенсивности света в точке P к интенсивности падающего света. Потерями на отражение и поглощение в пластине пренебречь. Показатель преломления стекла для приведенной длины волны равен 1.5.

  9. В непрозрачной пластинке имеется отверстие диаметром 1 мм. Оно освещается монохроматическим светом с длиной волны 500 нм от удаленного точечного источника. Найти расстояние от отверстия, на котором будет наблюдаться наибольшая освещенность.

  10. Какое наименьшее число штрихов должна содержать дифракционная решетка, чтобы две составляющие желтой линии натрия с длинами волн 588.0 нм и 588.6 нм можно было наблюдать раздельно в спектре первого порядка?

  11. Чему равен (в градусах) угол полной поляризации вещества, у которого предельный угол полного внутреннего отражения равен 42?

  12. Частично поляризованный свет рассматривается через идеальный поляроид. При повороте поляроида на 60 относительно положения, соответствующего минимальной интенсивности выходящего из поляроида пучка, интенсивность света увеличилась в 1.5 раза. Определить отношение интенсивностей естественной и поляризованной частей падающего пучка.

  13. Луч 1 (см. рисунок) естественного света падает на плоскопараллельную стеклянную пластинку. Угол падения равен углу полной поляризации. При таком угле падения на стекло интенсивность отраженного луча составляет 0.1 от интенсивности падающего естественного света. Определить интенсивность света в луче 3, приняв интенсивность падающего света за единицу. Поглощением света в пластинке можно пренебречь.

  14. Под каким (в градусах) углом должен падать свет из воздуха на поверхность жидкости, налитой в стеклянный сосуд, чтобы свет, отраженный от дна сосуда, был полностью поляризован? Показатели преломления жидкости и стекла равны 1.3 и 1.5 соответственно.

  15. Луч света, падающий на поверхность раствора, частично отражается, частично преломляется. Определить показатель преломления раствора, если отраженный луч полностью поляризуется при угле преломления, равном 30.

  16. Медный шарик диаметром 1.2 см поместили в откачанный сосуд, температура стенок которого поддерживается близкой к абсолютному нулю. начальная температура шарика 300 К. Считая поверхность шарика абсолютно черной, найти, через сколько времени (в часах) его температура уменьшится в 2 раза. Удельная теплоемкость меди равна 395 Дж/(кгК), плотность меди 8600 кг/м3.

  17. При переходе от температуры T1 к температуре T2 площадь, ограниченная графиком функции распределения плотности энергии равновесного излучения по длинам волн, увеличивается в 16 раз. Во сколько раз уменьшается при этом длина волны, на которую приходится максимум испускательной способности абсолютно черного тела?

  18. Железный шар диаметром 10 см, нагретый до температуры 1500 К, остывает на открытом воздухе. Через какое время его температура понизится до 1000 К? При расчете принять, что шар излучает, как серое тело. коэффициент поглощения (поглощательная способность) железа 0.5. Теплопроводностью воздуха пренебречь. Удельная теплоемкость железа 500 Дж/(кгК), плотность железа 7900 кг/м3.

  19. Энергетическая светимость абсолютно черного тела 250 кВт/м2. На какую (в мкм) длину волны приходится максимум испускательной способности этого тела?

  20. Определите поглощательную способность серого тела, имеющего температуру 1000 к, если его поверхность, площадь которой 0.01 м2, излучает за 1 мин энергию 13.4 кДж.

  21. Для прекращения тока фотоэмиссии из платины необходима задерживающая разность потенциалов 3.7 В. При облучении теми же фотонами другого металла, задерживающая разность потенциалов равна 6 В. Найти (в эВ) работу выхода электрона с поверхности этого металла, если для платины работа выхода 6.3 эВ.

  22. Красная граница фотоэффекта для некоторого металла равна 470 нм. Найти (в нм) длину волны излучения, под действием которого из данного металла вырываются электроны, максимальная скорость которых равна 685 км/с.

  23. Найти (в Гц) частоту света, вырывающего с поверхности металла электроны, полностью задерживаемые отрицательным потенциалом в 2 В. Работа выхода для этого металла равна 1 эВ.

  24. При поочередном освещении поверхности некоторого металла светом с длинами волн 0.35 мкм и 0.54 мкм обнаружили, что соответствующие максимальные скорости фотоэлектронов отличаются друг от друга в 2 раза. Найдите (в эВ) работу выхода электрона с поверхности этого металла.

  25. Фотоэффект у некоторого металла начинается при частоте падающего света 61014 Гц. Найти (в эВ) работу выхода электронов из этого металла.

  26. Сколько атомов распадается за 1 год в 1 г урана, период полураспада которого равен 109 лет, а массовое число ядра 238?

  27. Постоянная радиоактивного распада изотопа йода равна 8.5810–2 1/сутки. Вычислить вероятность того, что данный атом распадается в течение ближайшей секунды.

  28. Через какое (в сутках) время распадется 75% имеющихся атомов полония, если непрерывно удалять радиоактивные продукты распада? Период полураспада полония равен 138 суток.

  29. За четверо суток распалась половина начального количества ядер радиоактивного изотопа. Определить постоянную распада.

  30. Чтобы определить возраст древней ткани, найденной в одной из египетских пирамид, была определена концентрация в ней атомов углерода. Она оказалась соответствующей 9.2 распадам в минуту на один грамм углерода. Концентрация углерода в живых растениях соответствует 14 распадам в минуту на один грамм углерода. Период полураспада углерода равен 5730 лет. Исходя из этих данных, оцените возраст ткани в годах.