Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Exam_total_modifi22

.pdf
Скачиваний:
10
Добавлен:
02.06.2015
Размер:
2.74 Mб
Скачать

влиянием протеаз (плазмина, трипсина). В дальнейшем в процесс образования фибрина вмешивается фактор XIII (фибриназа, фибринстабилизирующий фактор), который после активации тромбином в присутствии ионов Са2+ «прошивает» фибринполимеры дополнительными перекрестными связями, в результате чего появляется труднорастворимый фибрин, или фибрин i (insoluble). В результате этой реакции сгусток становится резистентным к фибринолитическим (протеолитическим) агентам и плохо поддается разрушению.

72. Группа крови, система резус

Учение о группах крови возникло из потребностей клинической медицины. Переливая кровь от животных человеку или от человека человеку, врачи нередко наблюдали тяжелейшие осложнения, иногда заканчивавшиеся гибелью реципиента (лицо, которому переливают кровь).

С открытием венским врачом К. Ландштейнером (1901) групп крови стало понятно, почему в одних случаях трансфузии крови проходят успешно, а в других заканчиваются трагически для больного. К. Ландштейнер впервые обнаружил, что плазма, или сыворотка, одних людей способна агглютинировать (склеивать) эритроциты других людей. Это явление получило наименование изогемагглютинации. В основе ее лежит наличие в эритроцитах антигенов, названных агглютиногенами и обозначаемых буквами А и В, а в плазме — природных антител, или агглютининов, именуемых α и β. Агглютинация эритроцитов наблюдается лишь в том случае, если встречаются одноименные агглютиноген и агглютинин: А и α, В и β.

Установлено, что агглютинины, являясь природными антителами (AT), имеют два центра связывания, а потому одна молекула агглютинина способна образовать мостик между двумя эритроцитами. При этом каждый из эритроцитов может при участии агглютининов связаться с соседним, благодаря чему возникает конгломерат (агглютинат) эритроцитов.

Вкрови одного и того же человека не может быть одноименных агглютиногенов и агглютининов, так как в противном случае происходило бы массовое склеивание эритроцитов, что несовместимо с жизнью. Возможны только четыре комбинации, при которых не встречаются одноименные агглютиногены и агглютинины, или четыре группы крови: I — αβ, II — Aβ, III — Вα, IV — АВ.

Кроме агглютининов, в плазме, или сыворотке, крови содержатся гемолизины: их также два вида и они обозначаются, как и агглютинины, буквами α и β. При встрече одноименных агглютиногена

игемолизина наступает гемолиз эритроцитов. Действие гемолизинов проявляется при температуре 37—40 οС. Вот почему при переливании несовместимой крови у человека уже через 30—40 с. наступает гемолиз эритроцитов. При комнатной температуре, если встречаются одноименные агглютиногены и агглютинины, происходит агглютинация, но не наблюдается гемолиз.

Вплазме людей с II, III, IV группами крови имеются антиагглютиногены, покинувшие эритроцит

иткани. Обозначаются они, как и агглютиногены, буквами А и В

Для решения вопроса о совместимости групп крови пользуются следующим правилом: среда реципиента должна быть пригодна для жизни эритроцитов донора (человек, который отдает кровь). Такой средой является плазма, следовательно, у реципиента должны учитываться агглютинины и гемолизины, находящиеся в плазме, а у донора — агглютиногены, содержащиеся в эритроцитах. Для решения вопроса о совместимости групп крови смешивают исследуемую кровь с сывороткой, полученной от людей с различными группами крови

Следовательно, кровь I группы совместима со всеми другими группами крови, поэтому человек, имеющий I группу крови, называется универсальным донором. С другой стороны, эритроциты IV группы крови не должны давать реакции агглютинации при смешивании с плазмой (сывороткой) людей с любой группой крови, поэтому люди с IV группой крови называются универсальными реципиентами.

Почему же при решении вопроса о совместимости не принимают в расчет агглютинины и гемолизины донора? Это объясняется тем, что агглютинины и гемолизины при переливании небольших доз крови (200—300 мл) разводятся в большом объеме плазмы (2500— 2800 мл) реципиента и связываются его антиагглютининами, а потому не должны представлять опасности для эритроцитов.

В повседневной практике для решения вопроса о группе переливаемой крови пользуются иным правилом: переливаться должны одногруппная кровь и только по жизненным показаниям, когда человек потерял много крови. Лишь в случае отсутствия одногруппной крови с большой осторожностью можно перелить небольшое количество иногруппной совместимой крови. Объясняется это тем, что приблизительно у 10—20% людей имеется высокая концентрация очень активных

агглютининов и гемолизинов, которые не могут быть связаны антиагглютининами даже в случае переливания небольшого количества иногруппной крови.

Посттрансфузионные осложнения иногда возникают из-за ошибок при определении групп крови. Установлено, что агглютиногены А и В существуют в разных вариантах, различающихся по своему строению и антигенной активности. Большинство из них получило цифровое обозначение (А1, А,2, А3 и т. д., В1, В2 и т. д.). Чем больше порядковый номер агглютиногена, тем меньшую активность он проявляет. И хотя разновидности агглютиногенов А и В встречаются относительно редко, при определении групп крови они могут быть не обнаружены, что может привести к переливанию несовместимой крови.

Следует также учитывать, что большинство человеческих эритроцитов несет антиген Н. Этот АГ всегда находится на поверхности клеточных мембран у лиц с группой крови 0, а также присутствует в качестве скрытой детерминанты на клетках людей с группами крови А, В и АВ. Н — антиген, из которого образуются антигены А и В. У лиц с I группой крови антиген доступен действию анти-Н- антител, которые довольно часто встречаются у людей соII и IV группами крови и относительно редко у лиц с III группой. Это обстоятельство может послужить причиной гемотрансфузионных осложнений при переливании крови 1 группы людям с другими группами крови.

Концентрация агглютиногенов на поверхности мембраны эритроцитов чрезвычайно велика. Так, один эритроцит группы крови A1 содержит в среднем 900 000—1 700 000 антигенных детерминант, или рецепторов, к одноименным агглютининам. С увеличением порядкового номера агглютиногена число таких детерминант уменьшается. Эритроцит группы А2 имеет всего 250 000— 260 000 антигенных детерминант, что также объясняет меньшую активность этого агглютиногена.

В настоящее время система AB0 часто обозначается как АВН, а вместо терминов «агглютиногены» и «агглютинины» применяются термины «антигены» и «антитела» (например, АВНантигены и АВН-антитела).

К. Ландштейнер и А. Винер (1940) обнаружили в эритроцитах обезьяны макаки резус АГ, названный ими резус-фактором. В даль¬нейшем оказалось, что приблизительно у 85% людей белой расы также имеется этот АГ. Таких людей называют резус-положитель¬ными (Rh+). Около 15% людей этот АГ не имеют и носят название резус-отрицательных (Rh).

Известно, что резус-фактор — это сложная система, включающая более 40 антигенов, обозначаемых цифрами, буквами и символами. Чаще всего встречаются резус-антигены типа D (85%), С (70%), Е (30%), е (80%) — они же и обладают наиболее выраженной антигенностью. Система резус не имеет в норме одноименных аг-глютининов, но они могут появиться, если резус-отрицательному человеку перелить резус-положительную кровь.

Резус-фактор передается по наследству. Если женщина Rh, a мужчина Rh+, то плод в 50—100% случаев унаследует резус-фактор от отца, и тогда мать и плод будут несовместимы по резус-фактору. Установлено, что при такой беременности плацента обладает по¬вышенной проницаемостью по отношению к эритроцитам плода. Последние, проникая в кровь матери, приводят к образованию ан¬тител (антирезусагглютининов). Проникая в кровь плода, антитела вызывают агглютинацию и гемолиз его эритроцитов.

Тяжелейшие осложнения, возникающие при переливании несов¬местимой крови и резусконфликте, обусловлены не только обра¬зованием конгломератов эритроцитов и их гемолизом, но и интен¬сивным внутрисосудистым свертыванием крови, так как в эритро¬цитах содержится набор факторов, вызывающих агрегацию тромбоцитов и образование фибриновых сгустков. При этом страдают все органы, но особенно сильно повреждаются почки, так как сгустки забивают «чудесную сеть» клубочка почки, препятствуя образованию мочи, что может быть несовместимо с жизнью.

Согласно современным представлениям, мембрана эритроцита рассматривается как набор самых различных АГ, которых насчи¬тывается более 500. Только из этих АГ можно составить более 400 млн. комбинаций, или групповых признаков крови. Если же учитывать и все остальные АГ, встречающиеся в крови, то число комбинаций достигнет 700 млрд., т. е. значительно больше, чем людей на земном шаре. Разумеется, далеко не все АГ важны для клинической практики. Однако при переливании крови со сравни¬тельно редко встречающимся АГ могут возникнуть тяжелейшие гемотрансфузионные осложнения и даже смерть больного.

Нередко при беременности возникают серьезные осложнения, в том числе выраженная анемия, что может быть объяснено несов¬местимостью групп крови по системам мало изученных антигенов матери и плода. При этом страдает не только беременная, но в неблагополучных условиях находится и будущий ребенок. Несов¬местимость матери и плода по группам крови может быть причиной выкидышей и преждевременных родов.

Гематологи выделяют наиболее важные антигенные системы: ABO, Rh, MNSs, P, Лютеран (Lu), Келл-Келлано (Kk), Льюис (Le), Даффи (Fy) и Кид (Jk). Эти системы антигенов учитываются в судебной медицине для установления отцовства и иногда при транс¬плантации органов и тканей.

В настоящее время переливание цельной крови производится сравнительно редко, так как пользуются трансфузией различных компонентов крови, т. е. переливают то, что больше всего требуется организму: плазму или сыворотку, эритроцитную, лейкоцитную или тромбоцитную массу. В подобной ситуации вводится меньшее ко-личество антигенов, что снижает риск посттрансфузионных ослож¬нений.

73. Типы кардиомиоцитов.

Кардиомиоциты можно подразделить на типичные и атипичные. К типичным относят рабочие, сократительные кардиомиоциты. К атипичным проводящие и эндокринные. Рабочие кардиомиоциты образуют свои цепочки. Именно они укорачиваясь обеспечивают силу сокращения всей сердечной мышцы. Рабочие кардиомиоциты способны передавать управляющие сигналы друг другу. Эти клетки имеют удлиненную форму, близкую к цилиндрическо. Их концы соединяются друг с другом так что цепочки клеток составляют функциональные волокна. В области контактов образуются вставочные диски.

74. Проводящая система сердца, строение и функции.

Начинается проводящая система сердца синусовым узлом , который расположен субэпикардиально в верхней части правого предсердия между устьями полых вен. Это пучок специфических тканей, длиной 10-20 мм, шириной 3-5 мм. Узел состоит из двух типов клеток: P-клетки (генерируют импульсы возбуждения), T-клетки (проводят импульсы от синусового узла к предсердиям).

Далее следует атриовентрикулярный узел (узел Ашоффа-Тавара), который расположен в нижней части правого предсердия справа от межпредсердной перегородки, рядом с устьем коронарного синуса. Его длина 5 мм, толщина 2 мм. По аналогии с синусовым узлом, атриовентрикулярный узел также состоит из P-клеток и T-клеток.

Атриовентрикулярный узел переходит в пучок Гиса, который состоит из пенетрирующего (начального) и ветвящегося сегментов. Начальная часть пучка Гиса не имеет контактов с сократительным миокардом и мало чувствительна к поражению коронарных артерий, но легко вовлекается в патологические процессы, происходящие в фиброзной ткани, которая окружает пучок Гисса. Длина пучка Гисса составляет 20 мм.

Пучок Гиса разделяется на 2 ножки (правую и левую). Далее левая ножка пучка Гиса разделяется еще на две части. В итоге получается правая ножка и две ветви левой ножки, которые спускаются вниз по обеим стороная межжелудочковой перегородки. Правая ножка направляется к мышце правого желудочка сердца. Что до левой ножки, то мнения исследователей здесь расходятся. Считается, что передняя ветвь левой ножки пучка Гиса снабжает волокнами переднюю и боковую стенки левого желудочка; задняя ветвь - заднюю стенку левого желудочка, и нижние отделы боковой стенки.

правая ножка пучка Гиса; правый желудочек;

задняя ветвь левой ножки пучка Гиса; межжелудочковая перегородка; левый желудочек; передняя ветвь левой ножки; левая ножка пучка Гиса; пучок Гиса.

Внутрижелудочковую проводящую систему можно рассматривать как систему, состоящую из 5 основных частей: пучок Гиса, правая ножка, основная ветвь левой ножки, передняя ветвь левой ножки, задняя ветвь левой ножки.

Наиболее тонкими, следовательно уязвимыми, являются правая ножка и передняя ветвь левой ножки пучка Гиса. Далее, по степени уязвимости: основной ствол левой ножки; пучок Гиса; задняя ветвь левой ножки. Ножки пучка Гиса и их ветви состоят из двух видов клеток - Пуркинье и клеток, по форме напоминающие клетки сократительного миокарда.

Ветви внутрижелудочковой проводящей системы постепенно разветвляются до более мелких ветвей и постепенно переходят в волокна Пуркинье, которые связываются непосредственно с

сократительным

миокардом

желудочков,

пронизывая

всю

мышцу

сердца.

Сокращения сердечной мышцы (миокарда)

происходят благодаря импульсам, возникающим в

синусовом узле и распространяющимся по проводящей системе сердца: через предсердия, атриовентрикулярный узел, пучок Гиса, волокна Пуркинье - импульсы проводятся к сократительному миокарду.

Возбуждающий импульс возникает в синусовом узле. Возбуждение синусового узла не отражается на ЭКГ.

Через несколько сотых долей секунды импульс из синусового узла достигает миокарда предсердий.

По предсердиям возбуждение распространяется по трем путям, соединяющим синусовый узел (СУ) с атриовентрикулярным узлом (АВУ):

Передний путь (тракт Бахмана) - идет по передневерхней стенке правого предсердия и разделяется на две ветви у межпредсердной перегородки - одна из которых подходит к АВУ, а другая - к левому предсердию, в результате чего, к левому предсердию импульс приходит с задержкой в 0,2 с;

Средний путь (тракт Венкебаха) - идет по межпредсердной перегородке к АВУ; Задний путь (тракт Тореля) - идет к АВУ по нижней части межпредсердной перегородки и от

него ответвляются волокна к стенке правого предсердия.

Возбуждение, передающееся от импульса, охватывает сразу весь миокард предсердий со скоростью 1 м/с.

Пройдя предсердия, импульс достигает АВУ, от которого проводящие волокна распространяются во все стороны, а нижняя часть узла переходит в пучок Гиса.

АВУ выполняет роль фильтра, задерживая прохождение импульса, что создает возможность для окончания возбуждения и сокращения предсердий до того, как начнется возбуждение желудочков. Импульс возбуждения распространяется по АВУ со скоростью 0,05-0,2 м/с; время прохождения импульса по АВУ длится порядка 0,08 с.

МеждуАВУ и пучком Гиса нет четкой границы. Скорость проведения импульсов в пучке Гиса составляет 1 м/с.

Далее возбуждение распространяется в ветвях и ножках пучка Гиса со скоростью 3-4 м/с. Ножки пучка Гиса, их разветвления и конечная часть пучка Гиса обладают функцией автоматизма, который составляет 15-40 импульсов в минуту.

Разветвления ножек пучка Гиса переходят в волокна Пуркинье, по которым возбуждение распространяется к миокарду желудочков сердца со скоростью 4-5 м/с. Волокна Пуркинье также обладают функцией автоматизма - 15-30 импульсов в минуту.

Вмиокарде желудочков волна возбуждения сначала охватывает межжелудочковую перегородку, после чего распространяется на оба желудочка сердца.

Вжелудочках процесс возбуждения идет от эндокарда к эпикарду. При этом во время возбуждения миокарда создается ЭДС, которая распространяется на поверхность человеческого тела и является сигналом, который регистрируется электрокардиографом.

Таким образом, в сердце имеется множество клеток, обладающих функцией автоматизма: синусовый узел (автоматический центр первого порядка) - обладает наибольшим

автоматизмом; атриовентрикулярный узел (автоматический центр второго порядка);

пучок Гиса и его ножки (автоматический центр третьего порядка).

Внорме существует только один водитель ритма - это синусовый узел, импульсы от которого распространяются к нижележащим источникам автоматизма до того, как в них закончится подготовка очередного импульса возбуждения, и разрушают этот процесс подготовки. Говоря проще, синусовый узел в норме является основным источником возбуждения, подавляя аналогичные сигналы в автоматических центрах второго и третьего порядка.

Автоматические центры второго и третьего порядка проявляют свою функцию только в патологических условиях, когда автоматизм синусового узла снижается, или же повышается их автоматизм.

Автоматический центр третьего порядка становится водителем ритма при снижении функций автоматических центров первого и второго порядков, а также при увеличении собственной автоматической функции.

Проводящая система сердца способна проводить импульсы не только в прямом направлении - от предсердий к желудочкам (антеградно), но и в обратном направлении - от желудочков к предсердиям (ретроградно).

75. Электрокардиограмма.

Охват возбуждением огромного количества клеток рабочего миокарда вызывает появление отрицательного заряда на поверхности этих клеток. Сердце становится мощным электрогенератором. Ткани тела, обладая сравнительно высокой электропроводностью, позволяют регистрировать электрические потенциалы сердца с поверхности тела. Такая методика исследования электрической активности сердца, введенная в практику В. Эйнтховеном, А. Ф. Самойловым, Т. Льюисом, В. Ф. Зелениным и др., получила название электрокардиографии, а регистрируемая с ее помощью кривая называется электрокардиограммой (ЭКГ). Электрокардиография широко применяется в медицине как диагностический метод, позволяющий оценить динамику распространения возбуждения в сердце и судить о нарушениях сердечной деятельности при изменениях ЭКГ.

Зарегистрированная ЭКГ отражает последовательный охват возбуждением сократительного миокарда предсердий и желудочков.

Зубец Р отображает охват возбуждением предсердий и получил название предсердного. Далее возбуждение распространяется на предсердно-желудочковый узел и движется по проводящей системе желудочков. В это время электрокардиограф регистрирует изопотенциальную линию (оба предсердия полностью возбуждены, оба желудочка еще не возбуждены, а движение возбуждения по проводящей системе желудочков не улавливается электрокардиографом — сегмент PQ на ЭКГ).

В предсердиях возбуждение распространяется преимущественно по сократительному миокарду лавинообразно от синусно-предсердной к предсердно-желудочковой области. Скорость распространения возбуждения по специализированным внутрипредсердным пучкам в норме примерно равна скорости распространения по сократительному миокарду предсердия, поэтому охват возбуждением предсердий отображается монофазным зубцом Р. Охват возбуждением желудочков осуществляется посредством передачи возбуждения с элементов проводящей системы на сократительный миокард, что обусловливает сложный характер комплекса QRS, отражающего охват возбуждением желудочков. При этом зубец Q обусловлен возбуждением верхушки сердца, правой сосочковой мышцы и внутренней поверхности желудочков, зубец R — возбуждением основания сердца и наружной поверхности желудочков. Процесс полного охвата возбуждением миокарда желудочков завершается к окончанию формирования зубца S. Теперь оба желудочка возбуждены и сегмент ST находится на изопотенциальной линии вследствие отсутствия разности потенциалов в возбудимой системе желудочков.

Зубец Т отражает процессы реполяризации, т. е. восстановление нормального мембранного потенциала клеток миокарда. Эти процессы в различных клетках возникают не строго синхронно. Вследствие этого появляется разность потенциалов между еще деполяризованными участками миокарда (т. е. обладающими отрицательным зарядом) и участками миокарда, восстановившими свой положительный заряд. Указанная разность потенциалов регистрируется в виде зубца Т. Этот зубец — самая изменчивая часть ЭКГ. Между зубцом Т и последующим зубцом Р регистрируется изопотенциальная линия, так как в это время в миокарде желудочков и в миокарде предсердий нет разности потенциалов. Видимого отображения на ЭКГ зубца, соответствующего реполяризации предсердий, нет в связи с тем, что он по времени совпадает с мощным комплексом QRS и поглощается им. При поперечной блокаде сердца, когда не каждый зубец Р сопровождается комплексом QRS, наблюдается предсердный зубец Та (T-атриум), отображающий реполяризацию предсердий.

Общая продолжительность электрической систолы желудочков (Q—T) почти совпадает с длительностью механической систолы (механическая систола начинается несколько позже, чем электрическая).

Электрокардиограмма позволяет оценить характер нарушений проведения возбуждения в сердце. Так, по величине интервала Р—Q (от начала зубца Р и до начала зубца Q) можно судить о том, совершается ли проведение возбуждения от предсердия к желудочку с нормальной скоростью. В норме это время равно 0,12—0,2 с. Общая продолжительность комплекса QRS отражает скорость охвата возбуждением сократительного миокарда желудочков и составляет 0,06—0,1 с.

Процессы деполяризации и реполяризации возникают в разных участках миокарда неодновременно, поэтому величина разности потенциалов между различными участками сердечной мышцы на протяжении сердечного цикла изменяется. Условную линию, соединяющую в каждый момент две точки, обладающие наибольшей разностью потенциалов, принято называть электрической осью сердца. В каждый данный момент электрическая ось сердца характеризуется определенной величиной и направлением, т. е. обладает свойствами векторной величины.

Вследствие неодновременности охвата возбуждением различных отделов миокарда этот вектор изменяет свое направление. Оказалась полезной регистрация нетолько величины разности потенциалов сердечной мышцы (т. е. амплитуды зубцов на ЭКГ), но и изменений направления электрической оси желудочков сердца. Одновременная запись изменений величины разности потенциалов и направления электрической оси получило название векторэлектрокардиограммы (ВЭКГ).

Изменение ритма сердечной деятельности. Электрокардиография позволяет детально анализировать изменения сердечного ритма. В норме частота сердечных сокращений составляет 60— 80 в минуту, при более редком ритме — брадикардии — 40—50, а при более частом — тахикардии — превышает 90—100 и доходит до 150 и более в минуту. Брадикардия часто регистрируется у спортсменов в состоянии покоя, а тахикардия — при интенсивной мышечной работе и эмоциональном возбуждении.

Умолодых людей наблюдается регулярное изменение ритма сердечной деятельности в связи с дыханием — дыхательная аритмия. Она состоит в том, что в конце каждого выдоха частота сердечных сокращений урежается.

Экстрасистолы. При некоторых патологических состояниях сердца правильный ритм эпизодически или регулярно нарушается внеочередным сокращением — экстрасистолой. Если внеочередное возбуждение возникает в синусно-предсердном узле в тот момент, когда рефрактерный период закончился, но очередной автоматический импульс еще не появился, наступает раннее сокращение сердца — синусовая экстрасистола. Пауза, следующая за такой экстрасистолой, длится такое же время, как и обычная.

Внеочередное возбуждение, возникшее в миокарде желудочков, не отражается на автоматии синусно-предсердного узла. Этот узел своевременно посылает очередной импульс, который достигает желудочков в тот момент, когда они еще находятся в рефрактерном состоянии после экстрасистолы, поэтому миокард желудочков не отвечает на очередной импульс, поступающий из предсердия. Затем рефрактерный период желудочков кончается и они опять могут ответить на раздражение, но проходит некоторое время, пока из синусно-предсердного узла придет второй импульс. Таким образом, экстрасистола, вызванная возбуждением, возникшим в одном из желудочков (желудочковая экстрасистола), приводит к продолжительной так называемой компенсаторной паузе желудочков при неизменном ритме работы предсердий.

Учеловека экстрасистолы могут появиться при наличии очагов раздражения в самом миокарде,

вобласти предсердного или желудочковых водителей ритма. Экстрасистолии могут способствовать влияния, поступающие в сердце из ЦНС.

Трепетание и мерцание сердца. В патологии можно наблюдать своеобразное состояние мышцы предсердий или желудочков сердца, называемое трепетанием и мерцанием (фибрилляция). При этом происходят чрезвычайно частые и асинхронные сокращения мышечных волокон предсердий или желудочков — до 400 (при трепетании) и до 600 (при мерцании) в минуту. Главным отличительным признаком фибрилляции служит неодновременность сокращений отдельных мышечных волокон данного отдела сердца. При таком сокращении мышцы предсердий или желудочков не могут осуществлять нагнетание крови. У человека фибрилляция желудочков, как правило, смертельна, если немедленно не принять меры для ее прекращения. Наиболее эффективным способом прекращения фибрилляции желудочков является воздействие сильным (напряжением в несколько киловольт) ударом электрического тока, по-видимому, вызывающим одновременно возбуждение мышечных волокон желудочка, после чего восстанавливается синхронность их сокращений.

76. Рег-я деятельности сердца.

1 группа расположена в самом сердце – внутрисердечные регуляторные механизмы.

2 группа представляет собой внесердечные регуляторные механизмы. Внутрисердечный механизм

Связан с симпатической НС. Осуществляется регуляция систолического объема. При постоянных нагрузках – постоянное увеличение систолического объема.

Внесердечный механизм Связан с регуляцией на уровне НС и на уровне гормонов эндокринной системы.

ВНС – частичная зависимость сознания. Симпатическая система замыкается на СМ. Парасимпатическая система замыкается на ПродМ.

Вегетативные рефлексы связаны с корой БП, что обеспечивает изменение частоты сердечных сокращений в результате различных эмоций.

Эндокринная регуляция За счет гормонов. Гормоны мозгового вещества надпочечников – адреналин и норадреналин.

Ангитензин, серотонин. все они повышают частоту сердечных сокращений.

77.Сердечный цикл. Описать все этапы, обозначить связь с ЭКГ.

78.Кл-я сосудов.

Артерии (от сердца)

Вены (к сердцу)

Сосуды микроциркуляторного русла (расположены в тканях, в них происходит обмен веществами. артериолы, венулы, каппиляры)

Сосуды по функциональной значимости:

1.Упруго-растяжимые — аорта с крупными артериями в большомкруге кровообращения, легочная артерия с ее ветвями — в малом круге, т. е.сосуды эластического типа. Обеспечивают мощную растяжимость сосудов.

2.Сосуды сопротивления (резистивные сосуды) — артериолы, в томчисле и прекапиллярные сфинктеры, т. е. сосуды с хорошо выраженныммышечным слоем. Тонус гладких мышц обеспечивает подкачку, поддержание скорости на отдельном участке.

3.Обменные (капилляры) — сосуды, обеспечивающие обмен газами идругими веществами между кровью

итканевой жидкостью. Диффузия.

4.Шунтирующие (артериовенозные анастомозы) — сосуды,обеспечивающие «сброс» крови из артериальной в венозную систему сосудов,минуя капилляры.

5.Емкостные — вены, обладающие высокой растяжимостью.Благодаря этому в венах содержится 75 — 80/ крови. Возможно скопление крови. Скорость не велика.

79. Физ-я движения крови по артериям. Определение арт-х пульса и давления. Перечислить методы детекции. Определить клиническое значение.

80. Физ-я движения крови по венам. Определение вен-х пульса и давления. Перечислить методы детекции. Определить клиническое значение.

81. Микроциркуляция. Указать строение и ф. структурно-ф. ед-цы. Описать мех-мы действия в разл. усл-х.

Сосудистый модуль?

82. Рег-я движения крови по сосудам.

83.Пищеварение в полости рта. Состав, свойства и функции слюны. Регуляция слюноотделения.

Пищеварение начинается в ротовой полости, где происходит механическая и химическая обработка пищи. Механическая обработка заключается в измельчении пищи, смачивании ее слюной и формировании пищевого комка. Химическая обработка происходит за счет ферментов, содержащихся в слюне. В полость рта впадают протоки трех пар крупных слюнных желез: околоушных, подчелюстных, подъязычных и множества мелких желез, находящихся на поверхности языка и в слизистой оболочке нёба и щек. Железы, расположенные на корне языка, твердом и мягком нёбе, относятся к слизистым слюнным железам, секрет которых содержит много муцина. Подчелюстные и подъязычные железы являются смешанными.

Слюна, находящаяся в ротовой полости, является смешанной. Ее рН равна 6,8—7,4. У взрослого человека за сутки образуется 0,5—2 л слюны. Она состоит из 99% воды и 1% сухого остатка. Сухой остаток представлен органическими и неорганическими веществами. Среди неорганических веществ

— анионы хлоридов, бикарбонатов, сульфатов, фосфатов; катионы натрия, калия, кальция магния, а также микроэлементы: железо, медь, никель и др. Органические вещества слюны представлены в основном белками. Белковое слизистое вещество муцин склеивает отдельные частицы пищи и формирует пищевой комок. Основными ферментами слюны являются амилаза и мальтаза, которые действуют только в слабощелочной среде. Амилаза расщепляет полисахариды (крахмал, гликоген) до мальтозы (дисахарида). Мальтаза действует на мальтозу и расщепляет ее до глюкозы.

В слюне в небольших количествах обнаружены также и другие ферменты: гидролазы, оксиредуктазы, трансферазы, протеазы, пептидазы, кислая и щелочная фосфатазы. В слюне содержится белковое вещество лизоцим (мурамидаза), обладающее бактерицидным действием.

Пищеварение в ротовой полости имеет очень большое значение, так как является пусковым механизмом для функционирования желудочно-кишечного тракта и дальнейшего расщепления пищи.Слюна выполняет указанные ниже функции:

Пищеварительную.

Экскреторная функция. В составе слюны могут выделяться некоторые продукты обмена, такие как мочевина, мочевая кислота, лекарственные вещества (хинин, стрихнин), а также вещества, поступившие в организм (соли ртути, свинца, алкоголь).

Защитная функция. Слюна обладает бактерицидным действием благодаря содержанию лизоцима. Муцин способен нейтрализовать кислоты и щелочи. В слюне находится большое количество иммуноглобулинов, что защищает организм от патогенной микрофлоры. В слюне обнаружены вещества, относящиеся к системе свертывания крови: факторы свертывания крови, обеспечивающие местный гемостаз; вещества, препятствующие свертыванию крови и обладающие фибринолитической активностью; вещество, стабилизирующее фибрин. Слюна защищает слизистую оболочку полости рта от пересыхания.

Трофическая функция. Слюна является источником кальция, фосфора, цинка для формирования эмали зуба.

При поступлении пищи в ротовую полость происходит раздражение механо-, термо- и хеморецепторов слизистой оболочки. Возбуждение от этих рецепторов по чувствительным волокнам язычного (ветвь тройничного нерва) и языкоглоточного нервов, барабанной струны (ветвь лицевого нерва) и верхнегортанного нерва (ветвь блуждающего нерва) поступает в центр слюноотделения в продолговатом мозге. От слюноотделительного центра по эфферентным волокнам возбуждение доходит до слюнных желез и железы начинают выделять слюну. Эфферентный путь представлен парасимпатическими и симпатическими волокнами. Парасимпатическая иннервация слюнных желез осуществляется волокнами языкоглоточного нерва и барабанной струны, симпатическая иннервация

— волокнами, отходящими от верхнего шейного симпатического узла. Тела преганглионарных нейронов находятся в боковых рогах спинного мозга на уровне II-IV грудных сегментов. Ацетилхолин, выделяющийся при раздражении парасимпатических волокон, иннервирующих слюнные железы, приводит к отделению большого количества жидкой слюны, которая содержит много солей и мало органических веществ. Норадреналин, выделяющийся при раздражении симпатических волокон, вызывает отделение небольшого количества густой, вязкой слюны, которая содержит мало солей и много органических веществ. Такое же действие оказывает адреналин. Субстанция Р стимулирует секрецию слюны. С02 усиливает слюнообразование. Болевые раздражения, отрицательные эмоции, умственное напряжение тормозят секрецию слюны.

Слюноотделение осуществляется не только с помощью безусловных, но и условных рефлексов. Вид и запах пищи, звуки, связанные с приготовлением пищи, а также другие раздражители, если они раньше совпадали с приемом пищи, разговор и воспоминание о пище вызывают условно-рефлекторное слюноотделение.

Качество и количество отделяемой слюны зависят от особенностей пищевого рациона. Например, при приеме воды слюна почти не отделяется. В слюне, выделяющейся на пищевые вещества, содержится значительное количество ферментов, она богата муцином. При попадании в ротовую полость несъедобных, отвергаемых веществ выделяется жидкая и обильная слюна, бедная органическими соединениями.

84. Пищеварение в желудке. Секреторная и моторная функции желудка. Регуляция желудочной секреции.

3 типа желез в зависимости от отдела желудка (железы концевой пластинки):

Кардиальный отдел, синтезирует слизь.

Дно и тело желудка – собственные железы желудка.Зимогенные клетки – пепсиноген I, II.

Обкладочные – синтезируют соляную кислоту(?)Пилоритические Секреты желез желудка

Поверхностные

Выводящие железы

Клетки, синтузирующие пепсиноген

Клетки, синтузирующие соляную кислоту

Фактор связывания В12.

Желудочный сок содержит воду, слизь, ионы.рН – 1.5-2.

Соляная кислота создает кислые условия – денатурация белков для расщепления, уничтожаются некоторые бактерии (нормально себя чувствует в этих условиях helicobacterpylori). Соляная кислота обеспечивает активацию пепсиногена с образованием пепсида. Секреция желудка регулируется на нервном уровне, гуморальном (гастрин, н-р).

Нервный уровень регуляции:

Цистолическая фаза – реакция на вид пищи, на пищу в ротовой полости, реакция на запах

и т.д.

Возбуждение в коре БП –> продМ –> блуждающий нерв –> слюна. Условно-рефлекторное выделение желудочного сока (условное кормление).

Желудочная фаза – краниальная дуга.

Стимуляция за счет стимуляции блуждающих нервов – гастрины, белки, алкоголь, кофеин.

• Кишечная фаза – гуморальный уровень. Синтез эндерокинина ->стимуляция желудка.

Пища из ротовой полости поступает в желудок, где она подвергается дальнейшей химической и механической обработке. Кроме того, желудок является пищевым депо. Механическая обработка пищи обеспечивается моторной деятельностью желудка, химическая осуществляется за счет ферментов желудочного сока. Размельченные и химически обработанные пищевые массы в смеси с желудочным соком образуют жидкий или полужидкий химус.

Желудок выполняет следующие функции: секреторную, моторную, всасывательную (эти функции будут описаны ниже), экскреторную (выделение мочевины, мочевой кислоты, креатипина, солей тяжелых металлов, йода, лекарственных веществ), инкреторную (образование гормонов гастрина и гистамина), гомеостатическую (регуляция рН).

Секреторная функция желудка обеспечивается железами, находящимися в его слизистой оболочке. Различают три вида желез: кардиальные, фундальные (собственные железы желудка) и пилорические (железы привратника). Железы состоят из главных, париетальных (обкладочных), добавочных клеток и мукоцитов. Главные клетки вырабатывают пепсиногены, париетальные — соляную кислоту, добавочные и мукоциты — мукоидный секрет. Фундальные железы содержат все три типа клеток. Поэтому в состав сока фундального отдела желудка входят ферменты и много соляной кислоты и именно этот сок играет ведущую роль в желудочном пищеварении.

Моторная функция желудка способствует перемешиванию пищи с желудочным соком, продвижению и порционному поступлению содержимого желудка в двенадцатиперстную кишку. Она обеспечивается работой гладкой мускулатуры. Мышечная оболочка желудка состоит из трех слоев гладких мышц. В пилорической части желудка есть сфинктер.

Пустой желудок обладает некоторым тонусом. Периодически происходит его сокращение (голодная моторика), которое сменяется состоянием покоя. Этот вид сокращения мышц связан с ощущением голода. Сразу после приема пищи происходит релаксация гладких мышц стенки желудка (пищевая рецептивная релаксация). Спустя некоторое время, что зависит от вида пищи, начинается сокращение желудка. Различают перистальтические, систолические и тонические сокращения желудка. Перистальтические движения осуществляются за счет сокращения циркулярных мышц желудка.

Эвакуация химуса из желудка в двенадцатиперстную кишку Содержимое желудка поступает в двенадцатиперстную кишку отдельными порциями благодаря сокращению мускулатуры желудка и открытию сфинктера привратника. Скорость перехода содержимого желудка в двенадцатиперстную кишку зависит от состава, объема, консистенции, осмотического давления, температуры и рН желудочного содержимого, степени наполнения двенадцатиперстной кишки, состояния сфинктера привратника. Жидкость переходит в двенадцатиперстную кишку сразу после поступления в желудок. Содержимое желудка переходит в двенадцатиперстную кишку только тогда, когда его консистенция становится жидкой или полужидкой. Углеводная пища эвакуируется быстрее, чем пища, богатая белками. Жирная пища переходит в двенадцатиперстную кишку с наименьшей скоростью. Время полной эвакуации смешанной пищи из желудка составляет 6—10 часов.

У взрослого человека в течение суток образуется и выделяется около 2 — 2,5 л желудочного сока. Желудочный сок имеет кислую реакцию (рН 1,5— 1,8). В его состав входят вода — 99% и сухой остаток — 1%. Сухой остаток представлен органическими и неорганическими веществами.

Главный неорганический компонент желудочного сока — соляная кислота, которая находится в свободном и связанном с протеинами состоянии. Соляная кислота выполняет ряд функций: 1) способствует денатурации и набуханию белков в желудке, что облегчает их последующее расщепление пепсинами; 2) активирует пепсиногены и превращает их в пепсины; 3) создает кислую среду, необходимую для действия ферментов желудочного сока; 4) обеспечивает антибактериальное действие желудочного сока; 5) способствует нормальной эвакуации пищи из желудка: открытию пилорического сфинктера со стороны желудка и закрытию со стороны 12-перстной кишки; 6)возбуждает панкреатическую секрецию.

Кроме того, в желудочном соке содержатся следующие неорганические вещества: хлориды, бикарбонаты, сульфаты, фосфаты, натрий, калий, кальций, магний и др.

Всостав органических веществ входят протеолитические ферменты, главную роль среди которых играют пепсины. Пепсины выделяются в неактивной форме в виде пепсиногенов. В желудочном соке имеются также и непротеолитические ферменты. Желудочная липаза мало активна и расщепляет только эмульгированные жиры. В желудке продолжается гидролиз углеводов под влиянием ферментов слюны. Это становится возможным потому, что пищевой комок, попавший в желудок, пропитывается кислым желудочным соком постепенно. И в это время во внутренних слоях пищевого комка в щелочной среде продолжается действие ферментов слюны.

Всостав органических веществ входит лизоцим, обеспечивающий бактерицидные свойства желудочного сока. Желудочная слизь, содержащая муцин, защищает слизистую оболочку желудка от механических и химических раздражений и от самопереваривания. В желудочном соке содержатся также аминокислоты, мочевина, мочевая кислота.

Железы желудка вне процесса пищеварения выделяют только слизь и пилорический сок. Отделение желудочного сока начинается при виде, запахе пищи, поступлении ее в ротовую полость. Процесс желудочного сокоотделения можно разделить на несколько фаз: сложнорефлекторную (мозговую), желудочную и кишечную.

Сложно-рефлекторная (мозговая) фаза включает условно-рефлекторный и безусловнорефлекторный механизмы. Условно-рефлекторное отделение желудочного сока происходит при раздражении обонятельных, зрительных, слуховых рецепторов (запах, вид пищи, звуковые раздражители, связанные с приготовлением пищи, разговорами о пище). В результате синтеза афферентных зрительных, слуховых и обонятельных раздражений в таламусе, гипоталамусе, лимбической системе и коре больших полушарий головного мозга повышается возбудимость нейронов пищеварительного бульбарного центра и создаются условия для запуска секреторной активности желудочных желез. Безусловно-рефлекторное желудочное сокоотделение начинается с момента попадания пищи в ротовую полость и связано с возбуждением рецепторов ротовой полости, глотки, пищевода. Импульсы по афферентным волокнам язычного (V пара черепно-мозговых нервов), языкоглоточного (IX пара) и верхнего гортанного (X пара) нервов поступают в центр желудочного сокоотделения в продолговатом мозге. От центра импульсы по эфферентным волокнам блуждающего нерва передаются к железам желудка, что приводит к усилению секреции.

Торможение секреции желудочного сока происходит за счет раздражения эфферентных симпатических волокон, идущих из центров спинного мозга.

Желудочная фаза секреции наступает с момента попадания пищи в желудок. Эта фаза реализуется за счет блуждающего нерва, внутриорганного отдела нервной системы и гуморальных факторов. Желудочная секреция в эту фазу обусловлена раздражением пищей рецепторов слизистой желудка, откуда импульсы передаются по афферентным волокнам блуждающего нерва в продолговатый мозг, а затем по эфферентным волокнам блуждающего нерва поступают к секреторным клеткам. Блуждающий нерв оказывает свое влияние на желудочную секрецию несколькими путями: прямой контакт с главными, обкладочными и добавочными клетками желудочных желез (возбуждение ацетилхолином М-холинорецепторов), через внутриорганную нервную систему и через гуморальное звено, так как волокна блуждающего нерва иннервируют G- клетки пилорической части желудка, которые продуцируют гастрин. Гастрин повышает активность главных, но в большей степени обкладочных клеток. В то же время продукция гастрина увеличивается под влиянием экстрактивных веществ мяса, овощей, продуктов переваривания белков, бомбезина. Снижение рН в антральном отделе желудка уменьшает высвобождение гастрина. Под влиянием блуждающего нерва повышается также секреция гистамина ЕС2-клетками желудка. Гистамин, взаимодействуя с Н2-гистаминовыми рецепторами обкладочных клеток, повышает секрецию желудочного сока высокой кислотности с низким содержанием пепсинов. К числу химических веществ, способных оказывать непосредственное влияние на секрецию желез слизистой оболочки желудка, относятся экстрактивные вещества мяса, овощей, спирты, продукты расщепления белков (альбумозы и пептоны).

Кишечная фаза секреции начинается при переходе химуса из желудка в кишечник. Химус воздействует на хемо-, осмо-, механорецепторы кишечника и рефлекторно изменяет интенсивность желудочной секреции. В зависимости от степени гидролиза пищевых веществ, в желудок поступают сигналы, повышающие желудочную секрецию или, наоборот, тормозящие. Стимуляция осуществляется за счет местных и центральных рефлексов и реализуется через блуждающий нерв, внутриорганную нервную систему и гуморальные факторы (выделение гастрина G-клетками двенадцатиперстной кишки). Эта фаза характеризуется длительным скрытым периодом, большой продолжительностью. Кислотность желудочного сока в этот период низкая. Торможение желудочной секреции происходит за счет выделения секретина, ХЦК-ПЗ, которые угнетают секрецию соляной кислоты, но усиливают

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]