Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Связь лекции.pdf
Скачиваний:
164
Добавлен:
04.06.2015
Размер:
4.45 Mб
Скачать

привела в начале 80-х годов к созданию в ряде промышленно развитых стран Европы и Северной Америки ССПС, которые положили начало массовому внедрению услуг подвижной связи во всем мире.

Развернутые в 80-x годах ССПС относят к первому поколению. К ним относятся стандарты AMPS (США), HCMTS (Япония), NMT-450 и NMT-900 (Северная Европа), C-450 (Германия), TACS (Великобритания), ETACS (Англия, Лондон), RTMS-101H (Италия) и Radiocom-200 (Франция). Они были рассчитаны в основном на обслуживание абонентов в рамках национальных границ, использовали аналоговую ЧМ для передачи речи и внутриполосную (in-band) сигнализацию в процессе установления соединения между абонентскими терминалами и остальной сетью. Исключение составляла лишь система NMT-450 (NMT-900), которая была введена в эксплуатацию в 1981 году как международная система для четырех стран Северной Европы: Дании, Финляндии, Норвегии и Швеции.

Однако, аналоговые ССПС уже не удовлетворяют современному уровню развития связи. Тем не менее один из аналоговых стандартов - NMT-450 - принят в качестве федерального стандарта России. На его основе созданы ССПС в Москве ("Московская сотовая связь", начало коммерческой эксплуатации - 1991 год, в настоящее время - более 20 тысяч абонентов), Санкт-Петербурге ("Дельта-Телеком") и других городах. В июне 1994 года началась коммерческая эксплуатация ССПС компании "Би-Лайн", использующей стандарт AMPS. В настоящее время данная ССПС предоставляет услуги цифровой сотовой связи в стандарте D-AMPS, обслуживает более 20 тысяч абонентов в Москве и области и обеспечивает административный роуминг с другими сетями этого стандарта.

Системы второго поколения проектировались для создания крупномасштабных сетей с учетом обеспечения международного "роуминга" - автоматическое обслуживание абонентов, приехавших со своими терминалами в другую страну. К настоящему времени разработано четыре стандарта:

пан-Европейский GSM;

два конкурирующих североамериканских ADC (D-AMPS) по стандарту TIA IS-54 и CDMA по стандарту TIA IS-95;

японский JDC.

Стандарт GSM является наиболее прогрессивным, его основные характеристики подробнее рассматриваются ниже.

Стандарт D-AMPS разрабатывался в США с 1987 года. FCC не смогла выделить отдельную полосу частот в диапазоне 900 МГц для перспективной цифровой ССПС США. Ассоциация промышленности сотовой связи (CTIA) совместно с TIA приняли решение о совмещении в одной полосе частот аналоговой ССПС стандарта AMPS и будущей цифровой ССПС, сохранив используемый в AMPS разнос каналов, равный 30 кГц, при использовании речевого кодека VSELP со скоростью преобразования речи 8 кбит/с. Стандарт TIA IS-54 на ССПС ADC (D-AMPS) был принят в 1990 году. Несмотря на то, что D-AMPS не полностью цифровое решение (используются аналоговые каналы управления), он оказался более прогрессивным, чем AMPS, и в настоящее время более 2 млн. абонентов в 14 странах мира, включая Россию, используют эту технологию.

ССПС, использующая кодовое разделение каналов CDMA, были разработаны фирмой Qualcomm (США) и развиваются фирмой Motorola. На системы CDMA TIA приняла стандарт IS-95. В сентябре 1995 года в Гонконге начата коммерческая эксплуатация первой сети CDMA данного стандарта на оборудовании фирмы Motorola.

В апреле 1991 года был принят японский стандарт цифровой ССПС JDC. Стандарт JDC рассчитан на работу в диапазонах частот 800/900 МГц и 1400/1500 МГц, использует так же как D-AMPS временное разделение каналов с тремя временными окнами на несущую. К особенностям JDC следует отнести прямую связь с ISDN, возможность шифрования передаваемых сообщений, применение речевого кодека VSELP со скоростью преобразования речи 11,2 кбит/с, меньший, чем

167

в D-AMPS, разнос частотных каналов - 25 кГц. В целом цифровая ССПС Японии во многом не уступает ССПС стандарта GSM и по некоторым параметрам превосходит американскую ССПС стандарта D-AMPS.

Рассмотрим характеристики пан-Европейского стандарта GSM.

В 1982 году CEPT в целях изучения и разработки общеевропейской цифровой системы сотовой связи создала рабочую группу, получившую название GSM (Groupe Special Mobile). В 1989 году дело создания GSM перешло к ETSI, а в 1990 году были опубликованы спецификации первой фазы GSM. К середине 1991 года стали поддерживаться коммерческие услуги GSM, а к 1993 году функционировало уже 36 сетей GSM в 22 странах, и еще 25 стран выбрали направление GSM или поставили вопрос о его принятии. Несмотря на то, что система GSM была стандартизирована в Европе, на самом деле она не является исключительно европейским стандартом. Сети GSM внедрены, либо планируются к внедрению почти в 60 странах Европы, Ближнего и Дальнего Востока, Африки, Южной Америки и в Австралии. В начале 1994 года число абонентов GSM во всем мире достигло 1,3 миллиона человек. К началу 1995 года их насчитывалось уже более 5 миллионов. Акроним GSM приобрел новое значение - Global System for Mobile communications.

Система GSM построена на основе новейшей технологии в виде цифровой системы с программным управлением, совместимой с цифровой телефонной сетью общего пользования интегрального обслуживания (ISDN). В ней использованы:

ЭМ ВОС;

система сигнализации SS7;

принципы построения интеллектуальной сети IN/1.

Элементы этой системы способны контролировать и управлять всеми основными характеристиками сигнала в процессе передачи. Система обладает достаточным "интеллектом" для обнаружения возникшего отклонения в работе, его диагностики, принятия решения и проведения необходимой коррекции.

В ней реализована большая часть возможностей ISDN плюс дополнительные возможности, связанные с особенностями подвижной радиосети: управление по радио, слежение за местоположением подвижного объекта, обеспечение функции эстафетной передачи, защита передаваемой информации и т.п. Инфраструктура сети создает и постоянно обновляют объемные базы данных, содержащие необходимые сведения об абонентах и их местоположении, устраняет все обнаруженные неполадки, модифицирует свою конфигурацию по мере изменения нагрузки и выполняет множество других функций по эксплуатации и обслуживанию сети, тарификации, взаимодействия с другими стационарными и подвижными сетями.

Для системы GSM допустимое отношение мощностей несущей и помех в канале связи составляет 9 дБ, в аналоговых системах этот показатель, как правило, близок к 18 дБ. Выигрыш в 9 дБ объясняется известными преимуществами цифровой обработки сигналов и, в частности, использованием устройств типа:

речевых кодеков, устойчивых к помехам в канале связи;

эффективных цифровых модуляторов, благодаря которым основная часть энергии радиосигнала оказывается сосредоточенной в полосе частот канала связи;

помехоустойчивых кодов в сочетании с процедурой перемежения;

корректоров, способных обеспечить работу в условиях многолучевого распространения сигналов с предельно допустимой дополнительной задержкой отраженных лучей 16 мкс;

перестраиваемых синтезаторов частот, позволяющих улучшить работу в условиях многолучевого распространения сигналов.

Системы GSM работают в диапазоне около 900 МГц, который разбит на два поддиапазона шириной по 25 МГц (Рис. 8.36): 890..915 МГц для передачи от портативных устройств к базовой

168

станции и 935..960 МГц для приема, т.е. используется организация дуплексной связи с частотным разделением (FDD). Каждый частотный поддиапазон разбит на 124 частотных канала с разносом между соседними 200 кГц (ширина полосы каждого частотного канала не превышает 200 кГц). Речевой канал системы GSM использует пару частотных каналов с результирующим разносом 45 МГц независимо от абсолютных значений несущих частот в обоих поддиапазонах. Наличие разноса препятствует появлению переходных помех между направлениями приема и передачи.

Рис. 8.36. Временная и частотная структура GSM

В каждом частотном канале данные передаются в 8 канальных интервалах (КИ), т.е. используется временное разделение каналов. Восемь КИ объединяются в цикл, а 26 циклов - в повторяющийся циклически сверхцикл длительностью 120 мс. Длительность КИ составляет около 600 мкс. Структура КИ показана на Рис. 8.37. Конкретное портативное устройство ведет передачу сигнала базовой станции в одном из КИ. В течении остальных КИ передача не ведется (передатчик "молчит").

169

Рис. 8.37. Структура КИ GSM

Вначале и конце КИ отводятся по 28 мкс на продолжительность переходных процессов, в ходе которых мощность излучения передатчика меняется (возрастает в начале и падает в конце КИ) на 70 дБ. Полезная продолжительность КИ составляет 546,12 мкс и служит для передачи 148 бит.

Водном из КИ, в котором передача не ведется, портативное устройство осуществляет прием сигнала от базовой станции, т.е. используется одна и та же антенна с разделением во времени.

Расстояния между портативным устройством и базовой станцией в пределах соты может достигать 30 км. В результате задержка распространения сигнала может достигать 100 мкс. Такая задержка серьезно влияет на работу базовой станции, поскольку переданный КИ может частично попасть на соседний. Поэтому базовая станция может посылать команды портативному устройству на опережение передачи, чтобы сигнал поступал на базовую станцию в своем КИ.

Также базовая станция в зависимости от расстояния до портативного устройства может осуществлять регулировку излучаемой мощности последнего с целью уменьшения расхода энергоресурса.

Одной из особенностей работы систем сотовой радиосвязи является прием сигналов в условиях многолучевого распространения (на входе приемника действует совокупность сигнала непосредственно пришедшего от передатчика и сигналов, многократно отразившихся от неровностей рельефа, зданий и т.п.). Многолучевое распространение приводит к таким нежелательным явлениям, как растянутая задержка сигнала, релеевские замирания и пр.

Избежать последствий многолучевого распространения позволяет механизм выравнивания сигналов. Он состоит в делении полезной длительности КИ на три части, в свою очередь разделенные битами флагов (см. Рис. 8.37). В середине располагается специальная легко распознаваемая синхропоследовательность, по которой производится выравнивание принятого КИ. До и после синхропоследовательности располагаются по 57 бит информационной нагрузки.

Функция эстафетной передачи в GSM. В отличие от централизованного управления, характерного для систем первого поколения, в системе GSM принят принцип распределенного управления между центром коммутации подвижной связи, базовыми станциями и подвижными терминалами. В течение всего сеанса связи подвижные терминалы измеряют уровни сигналов от соседних базовых станций и результаты измерений сообщают обслуживающей их базовой станции. Последняя определяет необходимость хэндовера и передает информацию о наиболее предпочтительной новой ячейке для обслуживания подвижного объекта системному контроллеру центра коммутации подвижной связи. Благодаря такому алгоритму распределенного управления большая часть работы выполняется не системным контроллером, а базовыми станциями и

170