Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции - feo - 2005 / lection_term_1.doc
Скачиваний:
55
Добавлен:
04.10.2013
Размер:
118.78 Кб
Скачать

5. Статистическая физика и параметры состояния в термодинамике.

Параметры состояния в термодинамике являются макрохарактеристиками системы, т.е. они определяют свойства и поведение системы в целом, а не свойства и поведение ее частей, не внутренних составляющих системы. Термодинамика занимается только макросистемами.

В предыдущей главе по существу изложена аксиоматика термодинамики, ее базис, фундамент. Так, собственно, поступали Евклид, Лобачевский, Риман, создавая свои «математики». Однако, для свободного и глубокого владения методом термодинамического анализа необходим широкий спектр физических представлений, образов, ассоциаций, связанных с основными понятиями термодинамики.

Как же представляет себе статистическая физика параметры состояния в термодинамике? По существу сказать: «Параметры состояния – это макрохарактеристика объекта», сказать: «Термодинамика занимается макросистемами» - означает, на языке теории вероятностей и статистики, что параметры состояния в термодинамике являются просто средними величинами, математическим ожиданием некоторых случайных величин.

Удельный объем v м3/кг.

Рассмотрим некоторый фиксированный геометрический объем V, м3 какого-то газа с границей Г. Пусть этот объем находится в том же газе, а стенки границы Г абсолютно проницаемы для молекул газа (см. рис. 3).

Рис. 3. Иллюстрация к понятию удельного объема.

Молекулы совершают случайное, хаотическое блуждание, какие-то из них войдут в объем V через границу Г, а какие-то выйдут из объема. Следовательно, число молекул в объеме V является случайной величиной с каким-то математическим ожиданием, т.е. средним значением. Если это среднее значение умножить на массу молекулы и произведение разделить на V, то и получим, по определению, величину плотности ρ. И в соответствии с (1.3) далее получаем величину удельного объема v. Отметим важное обстоятельство: чем больше число молекул газа в V, тем точнее находится оценка среднего значения числа молекул в V. Именно в этом смысл макрорассмотрения: число молекул газа должно быть очень большим. Что такое v или ρ, если в объеме V «бегает» одна – две молекулы – не знает никто.

Давление р н/м2.

Рассмотрим газ и непроницаемую стенку (рис. 4).

Рис. 4. Иллюстрация к понятию давления р.

Молекулы газа беспорядочно движутся в объеме около стенки. Скорость их движения случайна и по величине и по направлению. При подходе молекулы к стенке происходит удар: молекула деформирует стенку (сминает), далее стенка упруго локально отталкивает молекулу обратно, и весь этот процесс происходит за какое-то время Δτ секунд. Если до удара нормальную к стенке компоненту вектора скорости поступательного движения молекулы обозначить как W, то после удара ее скорость станет равной –W (минус). Это означает, что количество движения молекулы изменилось на величину -2 μW. (μ – масса молекулы). Но согласно второму закону Ньютона это означает, что на молекулу действовала сила F в течение времени Δτ:

-2μW = F Δτ.

Следовательно, каждая молекула, ударившись о стенку, оказывает на нее силовое воздействие F. И это воздействие случайно. Найдем среднее значение силы ударов молекул по стенке, усредняя по множеству этих молекул за время много большее Δτ, разделим на величину площади поверхности стенки и получим величину давления р.

Опять обращаем внимание, что чем больше будет ударов молекул р стенку, тем точнее, ближе к истине величина р. Что такое давление, если у стенки «бегает» одна молекула, не знает никто.

Забегая вперед, заметим, что, чем больше молекул находится у стенки (чем больше плотность газа ρ), тем естественно больше давление р. Одновременно, чем больше скорость W молекул (т.е. чем больше температура газа), тем тоже больше давление р. А от этих рассуждений уже и не далеко до вывода уравнения состояния идеального газа.

Температура Т, К.

Рассмотрим поступательное движение молекул вещества, их колебательное и вращательное движения. Каждому из них можно сопоставить количество кинетической энергии. Так как поведение молекул реального газа стохастично, случайно, то и количество кинетической энергии молекул вещества тоже случайно. Можно найти среднее значение этих энергий по множеству всех молекул и сопоставить это среднее значение с температурой. В частности, в статистической физике показывается, что при рассмотрении простейшего газа, молекулы которого представимы в виде материальных точек (нет вращения и колебаний) получается следующее. Оказывается, что среднее значение (математическое ожидание) кинетической энергии поступательного движения молекулы равно 3/2 kT, где k – константа Больцмана. Следовательно, термический потенциал в термодинамике Т можно понимать именно как среднюю кинетическую энергию поступательного движения молекул вещества.

И опять-таки никто не знает, что такое температура одной, двух молекул. Оценка среднего значения по одной двум молекулам такая «плохая», что ее нельзя считать физической величиной.

В теории плазмы физики вынуждены вводить в рассмотрение аж две температуры. Одна – для атомов без электронов, другая – для электронов: уж очень большая разница в скоростях и массах.

Если вещество находится в газовой фазе, то температура характеризует преимущественно кинетическую энергию поступательного движения молекул. Для жидкой и твердой фазы поступательное движение сильно затруднено из-за большой плотности. Для твердой фазы характерно колебательное движение атомов и молекул, для жидкой еще и вращение.

Энтропия s. дж/кг К.

Рассматривая интерпретацию термодинамических параметров состояния с точки зрения статистической физики, можно увидеть, что эти параметры являются математическими ожиданиями некоторых случайных величин:

Мх = ∫а х f(x) dx,

где Мх – среднее значение случайной величины х, f(x) – плотность распределения вероятностей этой случайной величины. В теории вероятностей все просто: f(x) - известна, значит надо взять интеграл и получить величину математического ожидания. Больцман поставил вопрос совсем иначе: сколько существует распределений молекул (т.е. функций f(…)) в пространстве координат и скоростей, чтобы получить одну и туже величину средних величин? Математик, не задумываясь, ответит – бесконечно много. Физик с ним согласится, что действительно много. Чтобы не работать с огромными числами, Больцман предложил работать с их логарифмами. Если общее число вариантов распределений молекул в пространстве координат и скоростей обозначить как W, то по Больцману

s = k lnW.

где k - константа Больцмана, s- энтропия.

Иллюстрацией может служить толпа людей, митингующих на площади, затем те же люди, идущие на демонстрации, наконец, те же люди как в армии построенные в колонну и марширующие по той же площади. Здесь видно, что хаоса, беспорядка все меньше и меньше, поэтому и энтропия все меньше. Зато средние значения каких-то случайных величин по множеству людей одни и те же.

Подведем итоги: статистическая физика рассматривает термодинамические параметры состояния как средние значения некоторых случайных величин, усредненных по огромному множеству молекул в геометрическом и скоростном пространстве. Энтропия – мера хаоса и беспорядка, мера числа разных распределений вероятностей, дающих одни и те же средние значения некоторых случайных величин.

Соседние файлы в папке Лекции - feo - 2005