Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
0331705_F4E4A_nachertatelnaya_geometriya.doc
Скачиваний:
34
Добавлен:
10.06.2015
Размер:
2.7 Mб
Скачать

7.5.3. Взаимное пересечение криволинейных поверхностей

Линия пересечения в общем случае – замкнутая пространственная плавная кривая. Она определяется опорными точками (точками, имеющими на чертеже хотя бы по одной проекции), экстремальными (наиболее удаленными), точками смены видимости, при необходимости – промежуточными точками.

П р и м е р. Определить линию пересечения поверхности конуса и цилиндра (рис. 7.23).

Р е ш е н и е. Так как цилиндр является поверхностью фронтально проецирующего положения, то горизонтальная проекция этой линии уже есть, она совпадает с проекцией цилиндра. Проекцию цилиндра на П1определяем из условия принадлежности точки поверхности. Вначале определим опорные точки – 1, 5, 5', 6, затем – экстремальные – 3, 3', которые будут и точками смены видимости, после этого – промежуточные – 2, 2', 4, 4'. Недостающие проекции экстремальных и промежуточных точек определяем с помощью параллелей, приведенных на поверхности конуса. Пример построения цилиндра и конуса приведен в работе [1, с. 136].

Для некоторых поверхностей, состоящих из конуса и пирамид, линию их пересечения целесообразно определить с помощью “связки” плоскостей. Для этого через вершины этих поверхностей проводят ряд секущих плоскостей, пересекающих поверхности по образующим конуса и по прямым (в гранях пирамиды). Пересечение этих прямых, принадлежащих разным поверхностям, дает общие точки, по которым строят линию пересечения [1, с. 134].

Пересечение цилиндрической и конической поверхностей целесообразно определить с помощью так называемых “вращающихся” вспомогательных плоскостей [1, с. 54]. Линию пересечения эллиптических цилиндров удобно определять с помощью “пучка” параллельных секущих плоскостей [1, с. 138].

8. Особые случаи пересечения криволинейных

ПОВЕРХНОСТЕЙ

Ранее было отмечено, что линия пересечения двух криволинейных поверхностей представляет собой пространственную кривую (кривую четвертого порядка). В некоторых случаях эта кривая распадается на плоские кривые (кривые второго порядка). Рассмотрим четыре основных случая.

1. Если две поверхности второго порядка пересекаются в одном месте по плоской кривой, то и в других местах они пересекаются по плоской кривой.

П р и м е р. Даны сфера и эллиптический конус, причем основание конуса вписано в сферу (рис. 8.1).

Р е ш е н и е. Так как основание конуса в этом случае представляет собой плоскую кривую (окружность), то верхняя часть конуса пересекается со сферой по плоской кривой.

2. Если в две пересекающиеся поверхности второго порядка можно вписать сферу, то линия их пересечения представляет собой две плоские кривые.

П р и м е р. Даны цилиндр и конус. Оси поверхностей пересекаются (рис. 8.2).

Р е ш е н и е. Так как в эти поверхности можно вписать сферу, то линия пересечения будет представлять собой две плоские кривые (два эллипса).

3. Если две пересекающиеся поверхности второго порядка имеют две точки касания, то линия их пересечения распадается на две плоские кривые. Плоские кривые пересекаются между собой в точках касания поверхностей.

П р и м е р. Даны два цилиндра (круговой и эллиптический) (рис. 8.3).

Р е ш е н и е. Так как поверхности имеют две точки касания, то линия пересечения будет представлять собой две плоские кривые (в данном случае – окружность и эллипс).

4. Сфера, пересекаясь с соосной поверхностью вращения (поверхности соосные, если имеют общую ось вращения), в пересечении дает окружности. Число этих окружностей соответствует количеству пересечений поверхности сферой (рис. 8.4).

На основании этого свойства сферу можно принимать в качестве посредника при определении линии пересечения некоторых поверхностей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]