Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Семинар 1.docx
Скачиваний:
32
Добавлен:
05.02.2016
Размер:
1.34 Mб
Скачать

23. Теория разумного замысла

Итак, до сих пор, не существует никаких достоверных доказательств гипотезы Дарвина, есть только данные, которые эволюционисты выдают за подтверждения. При не предвзятой точке зрения, из всех гипотез возникновения вселенной, Земли и жизни на ней наиболее вероятна теория разумного замысла (сотворения). Согласно этой теории, ВСЕ живые существа были сотворены, созданы по "библейским родам" (т.е. основным типам) с жесткими границами, внутри которых животные и растения, со временем, претерпевали биологические изменения, в основном, под воздействием внешних факторов. Эти изменения могут приводить к возникновению новых биологических видов (путём расщепления существующих), однако, за счёт потери части первоночальной генетической информации (снижения поливалентности). При этом, не возникает ничего качественно принципиально нового, а лишь варьируется уже существующее в пределах первоначальных основных типов и заложенной генетической программы. Теория разумного замысла (не путать её с классическим креационизмом и его ошибками) не противоречит науке, отвергая, собственно, не столько недоказанную гипотезу эволюции, сколько натуралистическое мировоззрение. Из этой теории, вопреки мнениям натуралистов, догматических атеистов и прагматических агностиков (эволюционистов) следуют пять неизбежных "ДА": • есть Творец; • существуют абсолютные понятия добра и зла; • есть смысл в человеческой жизни и высшая цель; • человек обладает сознанием и свободой воли; • существует загробная жизнь. Теорию разумного замысла подтверждают: 1) наличие ДНК, как носителя необходимой для жизни информации, возникающей из разумного источника; 2) существование биологических систем "несократимой сложности"; 3) окаменелости "кембрийского взрыва"; 4) отсутствие фактов и достоверного механизма перехода от микроэволюции к макроэволюции; 5) способность человека мыслить и делать нравственный выбор.

24. Подтверждения Теории разумного замысла

Анализ современных научных данных подтверждает эту теорию. Так космология предполагает, что вселенная конечна, она имеет начало и, по-видимому, конец (согласно 2-му закону термодинамики). Современная физика показывает удивительную сбалансированность и поразительную точность констант и соотношений между частицами в микромире, а астрофизика обнаруживает её и в макромире звёзд, галактик и метагалактик. Астрономы и астрофизики открыли антропный принцип, т.е. множество взаимосвязанных, единственно возможных и точно соблюдаемых характеристик нашей галактики, солнечной системы и её планет, необходимых для жизни. Учёные, изучающие нашу планету (геофизики, климатологи, атмохимики, геоморфологи и др.) утверждают, что без соблюдения многочисленных условий: тектоники плит, магнитного поля, озонового слоя, сбалансированной атмосферы, уникального вещества - воды, а также углерода, кислорода, водорода, фосфора и многих других элементов в требуемых количествах и химических связях, и многих других условий жизнь на Земле существовать не может. Современная молекулярная биология и химия клетки раскрывают поразительную сложность и целесообразность конструкции клетки, которая имея размеры несколько микрон выполняет до 40 тысяч функций, сама производит себя и содержит исчерпывающую генетическую информацию об устройстве организма в целом. Эта генетическая информация различна для разных организмов, поэтому они размножаются согласно своему основному биологическому типу, а не происходят из одного и того же древнего одноклеточного первоорганизма. Этот вывод биологов подтверждают палеонтологи, которые до сих пор не обнаружили никаких "бесчисленных" переходных форм от низших форм жизни к высшим . И, наконец, математика - царица всех наук, полностью опровергает мнение, что вселенная, Земля и жизнь на ней могли возникнуть в результате случайных, статистических, естественных процессов. Вероятность этих событий равна нулю, что подтверждается 2-м законом термодинамики применительно к информатике, а именно: случай вносит беспорядок в информацию и никоим образом не повышает её организационную сложность. В этой связи, Уильям Пейли утверждал: "Наличие замысла в творении столь очевидно, что избавиться от этой идеи не так-то просто. Замысел предполагает существование разумного творца. Разумный творец должен быть личностью. Следовательно, эта личность и есть Бог". Бог не только сотворил мир, но активно действует в нём, влияя на людей и события в их жизни, осуществляя Свои замыслы. Поэтому один из числа самых великих математиков мира Коши, писал: "Я - христианин, то есть верую в Божество Иисуса Христа, как и Тихо де Браге, Коперник, Декарт, Ньютон, Ферма, Лейбниц, Паскаль, Гримальди, Эйлер и другие, как все великие астрономы, физики и математики прошлых веков ... ". Хотя бы один раз в жизни, каждый человек должен задать себе вопрос: "я возник случайно, в результате эволюции, или сотворён по разумному замыслу?" Честный ответ кардинально изменит вашу жизнь! Друг, время задать этот жизненно важный вопрос уже наступило ...

2, Идея самопроизвольного происхождения.

Идея самопроизвольного происхождения жизни - первая идея, которая была выдвинута, — это идея самопроизвольного зарождения жизни. Эмпедокл,например, считал, что все дышащее обязано своим существо­ванием самозарождению отдельных органов — рук, ног, лап, голов, сердец, которые затем, случайно комбинируясь, складывались в тела и достигали в конце концов вполне удачныхкомбинаций.Лет за сто до него Анаксимандр с поразительной для своего времени прозорливостью утверждал, что путь к высшим организмам природа начинала сболее примитивных, и, пожалуй, впервые выдвинул идею эволюции природы. Но ион за исходную субстанцию брал сложный природный продукт — морской ил. По его мнению, живые существа зародились во влажном иле, который когда-то покрывалземлю. Когда Земля стала высыхать, влага скапливалась в углублениях, в результате чего образовывались моря, а некоторые животные вышли на сушу.Среди них были разнообразные существа, в чреве которых развивались люди.Когда люди выросли, покрывавшая их чешуйчатая оболочка развалилась.Эта идея самопроизвольного зарождения организмов, видимо, представлялась многим поколениям наших далеких предков очень убедительной, так как просуществовала, не меняясь, долгие века. Самопроизвольное зарождение лягушек, мышей, саламандр, ягнят и т.п. из различных материальных образований, в том числе гниющей земли, отбросов и иных объектов, рассматривалось многими выдающимися умами и мыслителями: Фалесом,Анаксагором, Аристотелем, Коперником, Декартом, Галилеем, Ламарк, Гегель и именно благодаря этому идея имела столь широкое распространение и просуществовала так долго.

3, Идея происхождения жизни по принципу «живое – от живого».

В 17-ом веке опыты тосканского врача Франческо Реди показали, что без мух черви в гниющем мясе не обнаружатся, а если прокипятить органические растворы, то микроорганизмы в них вообще зарождаться не смогут. И только в 60-х гг. 19-го века французский ученый Луи Пастер в своих опытах продемонстрировал, что микроорганизмы появляются в органических растворах только потому, что туда раньше был занесен зародыш.

Таким образом, опыты Пастера имели двоякое значение –

Доказали несостоятельность концепции самопроизвольного зарождения жизни.

Обосновали идею о том, что все современное живое происходит только от живого.

В 18601862 Пастер изучал возможность самозарождения микроорганизмов. Он провёл элегантный опыт, доказавший невозможность самозарождения микробов (в современных условиях, хотя тогда не поднимался вопрос возможности самозарождения в прошлые эпохи), взяв термически стерилизованную питательную среду и поместив её в открытый сосуд с длинным изогнутым горлышком. Сколько бы сосуд ни стоял на воздухе, никаких признаков жизни в нём не наблюдалось, поскольку содержащиеся в воздухе споры бактерий оседали на изгибах горлышка. Но стоило отломить его или сполоснуть жидкой средой изгибы, как вскоре в среде начинали размножаться микроорганизмы, вышедшие из спор. В 1862 Парижская Академия присудила Пастеру премию за разрешение вопроса о самозарождении жизни.

4, Идея космического происхождения жизни.

Примерно в тот же период, когда Пастер продемонстрировал свои опыты, немецкий ученый Г. Рихтер разработал теорию занесения живых существ на Землю из космоса. Он утверждал, что зародыши могли попасть на Землю вместе с космической пылью и метеоритами и положить начало эволюции живого, которая породила все многообразие земной жизни. Эта концепция называлась концепцией панспермии. Ее разделяли такие ученые, как Г. Гельмгольц, У. Томпсон, что способствовало ее широкому распространению в научных кругах. Но она не получила научного доказательства, так как примитивные организмы или зародыши должны были бы погибнуть под действием ультрафиолетовых лучей и космического излучения.

Примерно в тот же период, когда Пастер продемонстрировал свои опыты, немецкий ученый Г. Рихтер разработал теорию занесения живых существ на Землю из космоса. Он утверждал, что зародыши могли попасть на Землю вместе с космической пылью и метеоритами и положить начало эволюции живого, которая породила все многообразие земной жизни. Эта концепция называлась концепцией панспермии. Ее разделяли такие ученые, как Г. Гельмгольц, У. Томпсон, что способствовало ее широкому распространению в научных кругах. Но она не получила научного доказательства, так как примитивные организмы или зародыши должны были бы погибнуть под действием ультрафиолетовых лучей и космического излучения

Теория космического происхождения человека выдвигает гипотезу, что формы жизни, способные выжить в условиях космоса (например, экстремофильные бактерии - способные жить и размножаться в экстремальных условиях окружающей среды), могли попасть в области мусора и пыли, выбрасываемые в космическое пространство после столкновения планет, на которых могла существовать жизнь, а также малых тел Солнечной системы. Такой процесс называется панспермией.

Бактерии могли путешествовать в состоянии покоя на протяжении длительного периода времени перед тем, как случайно попасть на другую планету или смешаться с околопланетным веществом. Если они встречали на новых планетах идеальные условия, бактерии восстанавливали свою активность и начинался процесс эволюции. Панспермия не отвечает на вопрос, как жизнь началась, а лишь объясняет способы её поддержания и распространения. Кроме того, она не предлагает, что жизнь обязательно возникла лишь единожды. Но если она возникла, она может распространятся в другие сферы обитания, которые подходят для репликации.

Межпланетное перемещение вещества хорошо задокументировано, например, подтверждено метеоритами с марсианскими формами жизни, найденными на Земле

5, Гипотеза А. И. Опарина.

Гипотеза биохимической эволюции. В 1924 г. биохимиком А. И. Опариным, а позднее английским ученым Дж. Холдейном (1929) была сформулировала гипотеза, рассматривающая жизнь как результат длительной эволюции углеродных соединений. Современная теория возникновения жизни на Земле, называемая теорией биопоэза, была сформулирована в 1947 г. английским ученым Дж. Берналом.

В настоящее время в процессе становления жизни условно выделяют четыре этапа: 1. Синтез низкомолекулярных органических соединении (биологических мономеров) из газов первичной атмосферы. 2. Образование биологических полимеров. 3. Формирование фазообособленных систем органических веществ, отделенных от внешней среды мембранами (протобионтов). 4. Возникновение простейших клеток, обладающих свойствами живого, в том числе репродуктивным аппаратом, обеспечивающим передачу дочерним клеткам свойств клеток родительских. Первые три этапа относят к периоду химической эволюции, а с четвертого начинается эволюция биологическая. Рассмотрим более подробно процессы, в результате которых на Земле могла возникнуть жизнь. Согласно современным представлениям, Земля сформировалась около 4,6 млрд. лет назад. Температура ее поверхности была очень высокой (4000—8000° С), и по мере остывания планеты и действия гравитационных сил происходило образование земной коры из соединений раз личных элементов. Процессы дегазации привели к созданию атмосферы, обогащенной, возможно, азотом аммиаком, парами воды, углекислым и угарным газами. Такая атмосфера была, по-видимому, восстановительной, о чем свидетельствует наличие в самых древних горных породах Земли металлов в восстановленной форме, таких, как, например, двухвалентное железо. Важно отметить при этом, что в атмосфере имелись атомы водорода, углерода, кислорода и азота, составляющие 99% атомов, входящих в мягкие ткани любого живого организма. Однако, чтобы атомы превратились в сложные молекулы, простых столкновений их было недостаточно. Нужна была дополнительная энергия, которая имелась на Земле как результат вулканической деятельности, электрических грозовых разрядов, радиоактивности, ультрафиолетового излучения Солнца. Отсутствие свободного кислорода было, вероятно, недостаточным условием для возникновения жизни. Если бы свободный кислород присутствовал на Земле в добиотический период, то, с одной стороны, он окислял бы синтезирующиеся органические вещества, а с другой - образуя озоновый слой в верхних горизонтах атмосферы, поглощал бы высокоэнергетическое ультрафиолетовое излучение Солнца. В рассматриваемый период возникновения жизни, длившийся примерно 1000 млн. лет, ультрафиолет был, вероятно, основным источником энергии для синтеза органических веществ. Из водорода, азота и соединений углерода при наличии свободной энергии на Земле должны были возникать сначала простые молекулы (аммиак, метан и подобные простые соединения). В дальнейшем эти несложные молекулы в первичном океане могли вступать в реакции между собой и с другими веществами, образуя новые соединения. В 1953 году американский исследователь Стенли Миллер в ряде экспериментов моделировал условия, существовавшие на Земле приблизительно 4 млрд. лет назад. Пропуская электрические разряды через смесь аммиака, метана, водорода и паров воды, он получил ряд аминокислот, альдегидов, молочную, уксусную и другие органические кислоты. Американский биохимик Сирил Поннаперума добился образования нуклеотидов и АТФ. В ходе таких и аналогичных им реакций воды первичного океана могли насыщаться различными веществами, образуя так называемый «первичный бульон». Второй этап состоял в дальнейших превращениях органических веществ и образовании абиогенным путем более сложных органических соединений, в том числе и биологических полимеров. Американский химик С. Фокс составлял смеси аминокислот, подвергал их нагреванию и получал протеиподобные вещества. На первобытной земле синтез белка мог проходить на поверхности земной коры. В небольших углублениях в застывающей лаве возникали водоемы, содержащие растворенные в воде малые молекулы, в том числе и аминокислоты. Когда вода испарялась или выплескивалась на горячие камни, аминокислоты вступали в реакцию, образуя протеноиды. Затем дожди смывали протеноиды в воду. Если некоторые из этих протеноидов обладали каталитической активностью, то мог начаться синтез полимеров, т. е. белковоподобных молекул. Третий этап характеризовался выделением в первичном «питательном бульоне» особых коацерватных капель, представляющих собой группы полимерных соединений. Было показано в ряде опытов, что образование коацерватных суспензий, или микросфер, типично для многих биологических полимеров в растворе. Коацерватные капли обладают некоторыми свойствами, характерными и для живой протоплазмы, как, например, избирательно адсорбировать вещества из окружающего раствора и за счет этого «расти», увеличивать свои размеры. Благодаря тому, что концентрация веществ в коацерватных каплях была в десятки раз больше, чем в окружающем растворе, возможность взаимодействия между отдельными молекулами значительно возрастала. Известно, что молекулы многих веществ, в частности полипептидов и жиров, состоят из частей, обладающих разным отношением к воде. Гидрофильные части молекул, расположенные на границе между коацерватами и раствором, поворачиваются в сторону раствора, где содержание воды больше. Гидрофобные части ориентируются внутрь коацерватов, где концентрация воды меньше. В результате поверхность коацерватов приобретает определенную структуру и в связи с этим свойство пропускать в определенном направлении одни вещества и не пропускать другие. Благодаря этому свойству концентрация некоторых веществ внутри коацерватов еще больше возрастает, концентрация других уменьшается, и реакции между компонентами коацерватов приобретают определенную направленность. Коацерватные капли становятся системами, обособленными от среды. Возникают протоклетки, или протобионты. Важным этапом химической эволюции явилось образование мембранной структуры. Параллельно с появлением мембраны шло упорядочение и усовершенствование метаболизма. В дальнейшем усложнении обмена веществ в таких системах существенную роль должны были играть катализаторы. Одним из основных признаков живого является способность к репликации, т. е. созданию копий, не отличаемых от материнских молекул. Таким свойством обладают нуклеиновые кислоты, которые в отличие от белков способны к репликации. В коацерватах мог образовываться протеноид, способный катализировать полимеризацию нуклеотидов с образованием коротких цепочек РНК. Эти цепочки могли выполнять роль как примитивного гена, так и информационной РНК. В этом процессе не участвовали еще ни ДНК, ни рибосомы, ни транспортные РНК, ни ферменты белкового синтеза. Все они появились позже. Уже на стадии формирования протобионтов имел место, вероятно, естественный отбор, т. е. сохранение одних форм и элиминация (гибель) других. Так прогрессивные изменения в структуре протобионтов закреплялись благодаря отбору. Появление структур, способных к самовоспроизведению, репликации, изменчивости определяет, по-видимому, четвертый этап становления жизни. Итак, в позднем архее (приблизительно 3,5 млрд. лет назад) на дне небольших водоемов или мелководных, теплых и богатых питательными веществами морей возникли первые примитивные живые организмы, которые по типу питания были гетеротрофами, т. е. питались готовыми органическими веществами, синтезированными в ходе химической эволюции. Способом обмена веществ им служило, вероятно, брожение — процесс ферментативного превращения органических веществ, в котором акцепторами электронов служат другие органические вещества. Часть энергии, выделяемой в этих процессах, запасается в виде АТФ. Возможно, некоторые организмы для жизненных процессов использовали и энергию окислительно-восстановительных реакций, т. е. были хемосинтетиками. Со временем происходило уменьшение запасов свободной органики в окружающей среде и преимущество получили организмы, способные синтезировать органические соединения из неорганических. Таким путем, вероятно, около 2 млрд. лет назад возникли первые фототрофные организмы типа цианобактерий, способные использовать световую энергию для синтеза органических соединений из СО2 и Н2О выделяя при этом свободный кислород. Переход к автотрофному питанию имел большое значениё для эволюции жизни на Земле не только с точки зрения создания запасов органического вещества, но и для насыщения атмосферы кислородом. При этом атмосфера стала приобретать окислительный характер. Появление озонового экрана защитило первичные организмы от губительного воздействия ультрафиолетовых лучей и положило конец абиогенному (небиологическому) синтезу органических веществ. Таковы современные научные представления об основных этапах происхождения и становления жизни в Земле.

<вверх>

«ПЕРВИЧНЫЙ БУЛЬОН»

В 1923 г. российский учёный Александр Иванович Опарин предположил, что в условиях первобытной Земли органические вещества возникали из простейших соединений — аммиака, метана, водорода и воды. Энергия, необходимая для подобных превращений, могла быть получена или от ультрафиолетового излучения, или от частых грозовых электрических разрядов — молний. Возможно, эти органические вещества постепенно накапливались в Древнем океане, образуя первичный бульон, в котором и зародилась жизнь. По гипотезе А. И. Опарина, в первичном бульоне длинные нитеобразные молекулы белков могли сворачиваться в шарики, «склеиваться» друг с другом, укрупняясь. Благодаря этому они становились устойчивыми к разрушающему действию прибоя и ультрафиолетового излучения. Происходило нечто подобное тому, что можно наблюдать, вылив на блюдце ртуть из разбитого градусника: рассыпавшаяся на множество мелких капелек ртуть постепенно собирается в капли чуть побольше, а потом — в один крупный шарик. Белковые «шарики» в «первичном бульоне» притягивали к себе, связывали молекулы воды, а также жиров. Жиры оседали на поверхности белковых тел, обволакивая их слоем, структура которого отдалённо напоминала клеточную мембрану. Этот процесс Опарин назвал коацервацией (от лат. соасеrvus — «сгусток»), а получившиеся тела — коацерватными каплями, или просто коацерватами. С течением времени коацерваты поглощали из окружавшего их раствора всё новые порции вещества, их структура усложнялась до тех пор, пока они не превратились в очень примитивные, но уже живые клетки.

6, Современные концепции происхождения жизни.

Определение жизни как «особой, очень сложной формы движения материи» (А.И.Опарин) отражает ее качественное своеобразие, несводимость биологических законов к химическим и физическим. Однако оно носит общий характер. Существуют и другие определения, основанные на выделении комплекса свойств, который обязателен для живых форм. Одно из них характеризует жизнь как макромолекулярную открытую систему, которой свойственны иерархическая организация, способность к самовоспроизведению, обмен веществ, тонко регулируемый поток энергии. Жизнь, согласно этому определению, представляет собой ядро упорядоченности, распространяющееся в менее упорядоченной Вселенной. Попытки решения вопросов о происхождении природы и сущности жизни породили разные концепции возникновения жизни на Земле: 1) жизнь возникала неоднократно и самопроизвольно из неживого вещества; 2) жизнь существовала всегда (теория стационарного состояния); 3) жизнь занесена на нашу планету извне (панспермия); 4) жизнь возникла в результате биохимической эволюции. Первая идея, которая была выдвинута, - это идея самопроизвольного зарождения жизни. Самопроизвольное зарождение лягушек, мышей, саламандр, ягнят из различных материальных образований, в том числе гниющей земли, отбросов и иных объектов, рассматривалось многими выдающимися мыслителями: Фалесом, Анаксагором, Аристотелем, Коперником, Декартом, Галилеем, Ламарком, Гегелем. Благодаря этому идея самопроизвольного зарождения организмов просуществовала, не меняясь, долгие века. В XVII веке опыты Реди показали, что без мух черви в гниющем мясе не обнаружатся, а если прокипятить органические растворы, то микроорганизмы в них не смогут зарождаться. Однако только в 60-х годах XIX века Л.Пастер в своих опытах продемонстрировал, что микроорганизмы появляются в растворах только потому, что туда раньше были занесены их зародыши. Он ввел методы асептики и антисептики, а в 1888 году создал и возглавил институт микробиологии, впоследствии Пастеровский институт. Являясь основоположником современной микробиологии и иммунологии, Л.Пастер известен также своими работами по асимметрии молекул, которые легли в основу стереохимии. Молекулярная асимметрия, открытая Л.Пастером, явилась одним из доказательств земного происхождения жизни и имела огромное значение для понимания особенностей мирового эволюционного процесса. Опыты Л.Пастера имели двоякое значение: 1) они доказали несостоятельность концепции самопроизвольного зарождения жизни; 2) обосновали идею о том, что все современное живое происходит только от живого. Практически одновременно с работами Л.Пастера на стыке космогонии и физики ученым Г.Рихтером разрабатывается гипотеза занесения живых существ на Землю из космоса. Согласно этой идее зародыши простых организмов могли попасть в земные условия вместе с метеоритами и космической пылью и дать начало эволюции живого. Таким образом жизнь могла возникнуть в разное время в разных частях Галактики. Подобные мысли разделяли крупнейшие ученые конца XIX – начала ХХ века: Либих, Кельвин, Гельмгольц, У. Томсон и другие, что способствовало ее широкому распространению. В 1908 году шведский химик Сванте Аррениус поддержал гипотезу происхождения жизни из космоса. Он описывал, как с населенных другими существами планет уходят в мировое пространство частички вещества, пылинки и живые споры микроорганизмов. Частицы жизни, носящиеся в бескрайних просторах космоса, переносились давлением света от звезд, оседали на планете с подходящими условиями для жизни и начинали новую жизнь на таких планетах. Эти идеи поддерживали выдающиеся русские ученые: академики С.П.Костычев, Л.С.Берг, П.П.Лазарев. Эти взгляды получили название концепции панспермии. В 1924 году вышла книга «Происхождение жизни» отечественного ученого А.И.Опарина, который утверждал, что органические вещества могут образовываться абиогенным путем при действии электрических зарядов, тепловой энергии, ультрафиолетовых лучей на газовые смеси, содержащие пары воды, аммиака, метана. Под влиянием различных факторов природы эволюция углеводородов привела к образованию аминокислот, нуклеотидов и их полимеров, которые по мере увеличения концентрации органических веществ в первичном «бульоне» гидросферы способствовали образованию коллоидных систем, которые, выделяясь из окружающей среды и имея неодинаковую внутреннюю структуру, по-разному реагировали на внешнюю среду. Превращению углеродистых соединений в химический период эволюции способствовала атмосфера с ее восстановительными свойствами, которая потом стала приобретать окислительные свойства, что свойственно атмосфере и в настоящее время. В 1953 году американский ученый Л.С.Миллер экспериментально доказал возможность абиогенного синтеза органических соединений из неорганических. Пропуская электрические разряды через смесь нагретых газов Н2, Н2О (в виде пара), СН4 и NH3, он получил набор нескольких аминокислот и органические кислоты. С.Фокс выдерживал сухую смесь аминокислот при 130 ºС в сосудах, приготовленных из кусков вулканической лавы, и получил в результате полипептиды. Оказалось, что можно синтезировать очень многие органические соединения, входящие в состав биологических полимеров-белков, нуклеиновых кислот и полисахаридов. Более 4 млрд. лет назад «колбой» Миллера был весь земной шар. Извергались вулканы, с которых стекали потоки раскаленной лавы, клубы пара окутывали Землю, атмосфера была насыщена электричеством. По мере остывания планеты водяные пары атмосферы выпадали ливнями. В этих условиях возникли предпосылки для длительного равновесия основных параметров, при которых могла зародиться жизнь. В этот период процессы в земных оболочках планеты были неравновесными. Однако такие газы, как Н2, Н2О (в виде пара), СН4, NH3, имелись в достаточном количестве для взаимодействий, рассмотренных Миллером. В отдельных относительно спокойных областях планеты начала зарождаться жизнь. Это происходило сразу во многих местах. Наверное, часто аминокислоты гибли, но кое-где им удавалось продержаться подольше, превратиться в белки и более сложные соединения. В работе «Об условиях появления жизни на Земле», вышедшей в 1931 году В.И.Вернадский ставит вопрос о первом появлении жизни, издавна волновавший философов. Однако он пытается разрешить этот вопрос не как философ, а как ученый. При этом, как считает Вернадский, можно научно подойти к решению этой проблемы, но не во всей ее полноте. «Это необходимо учитывать и резко определять область, которая подлежит в данное время научному ведению. Этой областью не будет решение вопроса о механизме зарождения или появления жизни на нашей планете, абиогенеза, например, но ею может являться определение условий, в которых такое появление или зарождение единственно возможно». В.И.Вернадский подчеркивает два важнейших, с геологической точки зрения, положения: во-первых, планетный, геологически закономерный характер жизни, и, во-вторых, теснейшую связь всех геологических процессов в биосфере с деятельностью живого вещества. Таким образом, понимание жизни как планетного явления приводит к представлениям о прямой зависимости существования биосферы от условий, созданных геологическими (в широком смысле слова) процессами. Таким образом, Вернадский сводит проблему зарождения жизни к проблеме возникновения биосферы, т.е. к определению тех условий, при которых возможно осуществление биогеохимических функций биосферы. Он считает, что такие условия могли возникнуть после выделения Луны из Земли и образования Тихого океана. В.И.Вернадский пишет: «Первое появление жизни при создании биосферы должно было произойти не в виде одного какого-нибудь вида организма, а в виде их совокупности, отвечающей геохимическим функциям жизни. Должны были сразу появиться биоценозы». При этом он допускает в качестве механизма возникновения жизни как абиогенез, так и проникновение живого вещества извне, из космоса. Абиогенез, как считает Вернадский, несмотря на то, что мы не наблюдаем сейчас его проявлений, мог существовать в определенных условиях до появления биосферы. В работе «Начало и вечность жизни», вышедшей в 1922 году В.И.Вернадский анализирует различные механизмы возникновения жизни и приходит к выводу, что жизнь могла быть вечной, не иметь начала: «Указание на логическую необходимость признания начала для эволюционного процесса имеет скорее философский, чем научный интерес. В конце концов, мы так же мало можем говорить о начале, как и о конце эволюционного процесса». По мнению В.И.Вернадского, земная кора это область былых биосфер. Биосфера существовала на протяжении геологической истории от криптозоя до наших дней и была широко проникнута живым веществом. В работе «Химическое строение биосферы Земли и ее окружение» В.И.Вернадский пишет: «Мы не знаем никакого промежутка времени на нашей планете, когда на ней не было бы живого вещества, не было бы биосферы». Биосфера непрерывно функционирует только в силу своей неразрывной связи с другими геосферами нашей планеты. Сегодня проблема происхождения жизни исследуется широким фронтом различных наук. В зависимости от того, какое наиболее фундаментальное свойство живого исследуется и преобладает в данном изучении (вещество, информация, энергия), все современные концепции происхождения жизни можно условно разделить: 1) концепция субстратного происхождения жизни (ее придерживаются биохимики, впервые высказал А.И.Опарин); 2) концепция энергетического происхождения (И.Пригожин, А.Волькенштейн); 3) концепция информационного происхождения (ее развивали А.Н.Колмогоров, А.А.Ляпунов, Д.С.Чернавский и др.). Из конкретных концепций, получивших сегодня признание, кроме гипотезы А.И.Опарина о путях эволюции обмена веществ, можно выделить концепцию о передаче наследственной информации английского ученого Дж.Холдейна, имевшего труды по генетике, биохимии, применению математических методов в биологии. Все концепции ставят целью определить тот низший порог, с которого начинает действовать естественный отбор на биологическом уровне, а значит, начинают функционировать биологические законы. Однако ниже этой границы действуют другие законы – закономерности эволюционной химии, т.е. совсем иная форма естественного отбора. В 1969 году А.П.Руденко предложил химический аспект происхождения жизни. Используя положение Ч.Дарвина о естественном отборе и принцип усложнения и прогрессивной направленности эволюции, он заложил теоретическую базу эволюционной химии. Одним из наиболее сложных вопросов, связанных с происхождением жизни, является характеристика особенностей доклеточного предка. Хорошо известен факт, что для саморепродукции нуклеиновых кислот (основы генетического кода) необходимы ферментные белки, а для синтеза белков – нуклеиновые кислоты. Отсюда следуют два вопроса: 1) что было первичным – белки или нуклеиновые кислоты; 2) если предположить, что эти классы полимеров возникли не одновременно, то как и когда произошло их объединение в единую систему передачи генетической информации? Существует еще одно важное и пока не нашедшее объяснения различие в свойствах живого и неживого вещества. В неживом веществе того же химического состава, что и живое, не происходит поворот плоскости поляризации проходящего через него света. Однако все белковые молекулы живых организмов поворачивают плоскость поляризации проходящего света влево, что указывает на их левую пространственную конфигурацию (L-конфигурация). Молекулы ДНК и РНК поворачивают луч света вправо, то есть обладают правой или Р-конфигурацией. Молекулярная стереоизометрия, или молекулярная хиральность, присуща только живой природе и является ее неотъемлемым свойством. По отношению к первичности образования белков или нуклеиновых кислот все существующие теории зарождения жизни делятся на две большие группы – голобиоза и генобиоза. Концепция А.И.Опарина относится к группе голобиоза, поскольку исходит из идеи первичности структур типа клеточной, наделенной способностью к элементарному обмену веществ при участии ферментного механизма. Нуклеиновые кислоту при таком механизме появляются на завершающем этапе. Примером иной точки зрения служит концепция Дж.Холдейна, согласно которой первичной была не структура, способная к обмену веществ с окружающей средой, а макромолекулярная система, подобная гену и способная к саморепродукции, и потому названная им «голым геном». Подобную группу концепций называют генобиозом или информационной гипотезой. Позиции гипотезы генобиоза заметно укрепились к концу ХХ века, а в начале ХХI века в представлениях о доклеточном предке она стала доминирующей. Общее признание в рамках этой гипотезы получила идея, согласно которой хирально чистыми молекулярными «блоками», составившими основу для зарождения живого, были макромолекулы ДНК или РНК. Современные биологи доказывают, что универсальной формулы жизни, т.е. такой, которая исчерпывающе отображала бы ее сущность, нет и не может быть. Такое понимание предполагает исторический подход к биологическому познанию как постижению сущности жизни, в ходе чего менялись и сами концепции происхождения жизни и представления о тех формах, в которых такое познание возможно.

Семинар 3

1, Среда обитания.

это часть природы, окружающая живые организмы и оказывающая на них прямое или косвенное воздействие. Из среды организмы получают всё необходимое для жизни и в неё же выделяют продукты обмена веществ. Среда каждого организма слагается из множества элементов неорганической и органической природы и элементов, привносимых человеком и его производственной деятельностью. При этом одни элементы могут быть частично или полностью безразличны организму, другие необходимы, а третьи оказывают отрицательное воздействие.

Нетронутая человеком среда обитания многих растений и животных

Различают естественную и искусственную (созданную человеком) среду обитания.

Отдельные свойства и элементы среды, воздействующие на организмы, называют экологическими факторами. Все экологические факторы можно разделить на три большие группы:

  • Абиотические факторы — это комплекс условий неорганической среды, влияющих на организм. (Свет, температура, ветер, воздух, давление, и т. д.)

  • Биотические факторы — это совокупность влияний жизнедеятельности одних организмов на другие. (Влияние растений и животных на других членов биогеоценоза)

  • Антропогенные (антропические) факторы — это все формы деятельности человеческого общества, изменяющие природу как среду обитания живых организмов или непосредственно влияющие на их жизнь. Выделение антропогенных факторов в отдельную группу обусловлено тем, что в настоящее время судьба растительного покрова Земли и всех ныне существующих видов организмов практически находится в руках человеческого общества.

Возможно также выделить следующие компоненты среды обитания: естественные тела среды обитания, гидросреду, воздушное пространство среды, антропогенные тела, поле излучений и тяготения среды.

В ООН создана специальная организация — Программа ООН по окружающей среде (ЮНЕП). В целях привлечения внимания к проблемам охраны окружающей среды ООН установила Всемирный день окружающей среды.

2, Экологические факторы.

свойства среды обитания, оказывающие какое-либо воздействие на организм. Индифферентные элементы среды, например, инертные газы, экологическими факторами не являются.

Экологические факторы отличаются значительной изменчивостью во времени и пространстве. Например, температура сильно варьирует на поверхности суши, но почти постоянна на дне океана или в глубине пещер.

Один и тот же фактор среды имеет разное значение в жизни совместно обитающих организмов. Например, солевой режим почвы играет первостепенную роль при минеральном питании растений, но безразличен для большинства наземных животных. Интенсивность освещения и спектральный состав света исключительно важны в жизни автотрофных организмов (большинство растений и фотосинтезирующие бактерии), а в жизни гетеротрофных организмов (грибы, животные, значительная часть микроорганизмов) свет не оказывает заметного влияния на жизнедеятельность.

Экологические факторы могут выступать как раздражители, вызывающие приспособительные изменения физиологических функций; как ограничители, обусловливающие невозможность существования тех или иных организмов в данных условиях; как модификаторы, определяющие морфо-анатомические и физиологические изменения организмов.

Организмы испытывают воздействие не статичных неизменных факторов, а их режимов — последовательности изменений за определённое время.

3, Рассмотреть классификацию экологических факторов по Ю. Одуму.

Ю. Одум (1986) под экологической сукцессией понимает вообще весь процесс развития экосистемы. Более конкретное определение дает этому явлению Н. Ф. Реймерс (1990): «Сукцессия – последовательная смена биоценозов, преемственно возникающая на одной и той же территории (биотопе) под влиянием природных факторов (в том числе и внутренних противоречий самих биоценозов) или воздействия человека».

Экологическая сукцессия происходит в определенный отрезок времени, в который изменяется видовая структура сообщества и абиотическая среда его существования вплоть до кульминации его развития – возникновения стабилизированной системы. Такую стабилизированную экосистему называют климаксом (гр. klimax лестница) – относительно стабильное состояние растительности. В этом состоянии система находится тогда, когда в ней на единицу энергии приходится максимальная биомасса и максимальное количество симбиотических связей между организмами.

Однако к этому состоянию система проходит через ряд стадий развития, первые из которых часто называют стадией первых поселенцев. Поэтому, в более узком смысле, сукцессия – это последовательность сообществ, сменяющих друг друга в данном районе.

Для возникновения сукцессии необходимо свободное пространство. В зависимости от первоначального состояния субстрата, различают первичную и вторичную сукцессии.

1. Первичная сукцессия или автотрофная – формирование сообществ начинается на первоначально свободном субстрате.

На стадии первичной сукцессии соотношения продукции (П) и дыхания (Д) в пользу П:

П > Д.

2. Вторичная сукцессия или гетеротрофная – это последовательная смена одного сообщества, существовавшего на данном субстрате, другим, более совершенным для данных абиотических условий. В этом случае продукция меньше дыхания.

П < Д.

Соотношение П / Д является функциональным показателем зрелости экосистемы (рис. 59).

Рис. 59. Соотношение продукции к дыханию

на разных этапах функционирования экосистем

(по Цветковой, 1999)

Вторичная сукцессия является, как правило, следствием деятельности человека. Например, возникает на вырубках ранее существовавшего леса (ельника).

Первые переселенцы, которые приживаются на новом участке, – это организмы, которые толерантны к абиотическим условиям нового для них местообитания. Не встречая особого сопротивления среды, они чрезвычайно быстро размножаются (саранча, эфемерная растительность и т. п.), т. е. на ранних этапах в эволюции экосистемы преобладает r-стратегия (рост численности).

Постепенно за счет достаточно быстрой смены и увеличения количества популяций возрастает видовое разнообразие и начинает повышаться значение К-фактора (ограничитель роста).

Увеличение видового разнообразия приводит к усложнению связей внутри сообщества, умножению симбиотических связей, снижению чрезмерной рождаемости и доминирования массовых видов, и т. д.

В конечном итоге, действия r- и К-факторов уравновешиваются и сообщество развивающейся серии становится стабильным, или климаксным, – «это самоподдерживающееся сообщество, находящееся в равновесии с физическим местообитанием» (Ю. Одум, 1975).

Первыми, как правило, на свободное пространство начинают внедряться растения посредством перенесенных ветром спор и семян, либо за счет вегетативных органов оставшихся по соседству растений. В качестве примера первичной сукцессии можно рассмотреть зарастание еловым лесом новых территорий на севере и востоке нашей страны (рис. 60). Вначале развиваются березняки, ольховники, осинники, под пологом которых растут ели. Постепенно они перерастают березу и вытесняют ее, захватывая пространство.

Семена обеих древесных пород легко переносятся ветром, но, если даже они прорастут одновременно, береза растет намного быстрее: к 6–10 годам ель едва достигает 50–60 см, а береза 8–10 м.

Рис. 60. Последовательные сукцессии при формировании ельника

(по Цветковой, 1999)

Классическим примером природной сукцессии является «старение» озерных экосистем – эвтрофикация (гр. eu хорошо, trohpos питание) – избыточное поступление биогенных питательных веществ (в основном фосфор и азот), приводящее к повышенной продуктивности («цветению») и вторичному загрязнению воды.

Эвтрофикация – составная часть естественного процесса сукцессии. За несколько тысяч лет озеро может измениться естественным путем и превратиться из олиготрофного в эвтрофное, или, иначе говоря, «состариться».

Антропогенная деятельность приводит к аналогичным последствиям всего за несколько десятилетий. Основные антропогенные источники фосфора и азота: необработанные сточные воды (в особенности из животноводческих комплексов) и смыв удобрений с полей. Во многих странах запрещено использование ортофосфата натрия в стиральных порошках для уменьшения эвтрофикации водоемов.

В результате эвтрофикации наблюдается «цветение» воды, обусловленное бурным развитием сине-зеленых водорослей (рис. 61).

Рис. 61. Эвтрофикация водоема

Попав в природные водоемы, биогенные элементы становятся питательной средой для микроорганизмов, в том числе – сине-зеленых водорослей, продукты которых – аллергены, токсины, уже на прямую воздействую­щие на человека. Особенно интенсивно водоросли размножаются в хорошо прогретой воде, т. е. летом.

Процесс антропогенного эвтрофирования, вызывая быстрые и подчас необратимые нарушения функциональных связей экосистемы, приводит к ухудшению качества воды, подрыву полезной продуктивности, а иногда и к полной утрате природных ресурсов озера. Основные отрицательные последствия этого процесса – массовое развитие планктонных водорослей, появление неприятного запаха и вкуса воды, увеличение содержания органических веществ, снижение прозрачности и увеличение цветности воды.

Перенасыщение воды органическим веществом стимулирует развитие сапрофитных бактерий, в том числе болезнетворных, а также водных грибов. В результате жизнедеятельности некоторых водорослей, особенно сине-зеленых, возникают токсические эффекты, приводящие к заболеваниям животных, а в отдельных случаях и человека.

На окисление огромного количества новообразованного органического вещества расходуется значительная часть содержащегося в озерной воде растворенного кислорода. В результате ценные в промысловом отношении породы рыб (лососевые, сиговые и др.), требовательные к высокому качеству воды, вытесняются низкосортными видами, менее в этом отношении чувствительными, и в дальнейшем – к замору рыб и животных.

Таким образом, в ходе сукцессии развивающееся сообщество преобразует и само местообитание.

4, Основные представления об адаптациях.

приспособление организмов к среде. Этот процесс охватывает строение и функции организмов (особей, видов, популяций) и их органов. Адаптация всегда развивается под воздействием трех основных факторов — изменчивости, наследственности и естественного отбора (равно как и искусственного — осуществляемого человеком).

Периодические факторы

Основные адаптации организмов к факторам внешней среды наследственно обусловлены. Они формировались на историко-эволюционном пути биоты и изменялись вместе с изменчивостью экологических факторов,, Организмы адаптированы к постоянно действующим периодическим факторам, но среди них важно различать первичные и вторичные.

Первичные

Первичные — это те факторы, которые существовали на Земле еще до возникновения жизни: температура, освещенность, приливы, отливы, естественные геофизические поля и др. Адаптация организмов к этим факторам наиболее древняя и наиболее совершенная.

Вторичные

Вторичные периодические факторы являются следствием изменения первичных: влажность воздуха, зависящая от температуры; растительная пища, связанная с цикличностью в развитии растений; ряд биотических факторов внутривидового влияния и др. Они возникли позднее первичных и адаптация к ним не всегда четко выражена.

В нормальных условиях в местообитании должны действовать только периодические факторы, непериодические — отсутствовать.

Непериодические факторы

Непериодические факторы обычно воздействуют катастрофически: могут вызвать болезни или даже смерть живого организма. Человек использовал это в своих интересах, искусственно вводя непериодические факторы: например, химическая отрава уничтожает вредные для него организмы: паразитов, вредителей сельхозкультур, болезнетворные бактерии, вирусы и т. п. Но оказалось, что длительное воздействие этого фактора также может вызвать адаптацию к нему: насекомые адаптировались к ДДТ, бактерии и вирусы — к антибиотикам, и т. д.

Источником адаптации являются генетические изменения в организме — мутации, возникающие как под влиянием естественных факторов на историко-эволюционном этапе, так и в результате искусственного влияния на организм. Мутации разнообразны и их накопление может даже привести к дезин- ¦теграционным явлениям, но благодаря отбору мутации и их комбинирование приобретают значение «ведущего творческо-1&& фактора адаптивной организации живых форм» (БСЭ. Т. 1. На историко-эволюционном пути развития на организмы действуют абиотические и биотические факторы в комплексе. Известны как успешные адаптации организмов к этому комплексу факторов, так и «безуспешные», т. е. вместо адаптации вид вымирает. Прекрасный пример успешной адаптации — эволюция лошади в течение примерно 60 млн лет от низкорослого предка до современного красивейшего быстроногого животного с высотой в холке до 1,6 м. Противоположный этому пример — сравнительно недавнее (десятки тысяч лет назад) вымирание мамонтов. Высокоаридный, субарктический климат последнего оледенения привел к исчезновению растительности, которой питались эти животные, кстати, хорошо приспособленные к низким температурам (Величко, 1970). Кроме того, высказываются мнения, что в исчезновении мамонта «повинен» и первобытный человек, которому тоже надо было выжить: мясо мамонтов употреблялось им в качестве пищи, а шкура спасала от холода. В приведенном примере с мамонтами недостаток растительной пищи вначале ограничивал численность мамонтов, а ее исчезновение привело к их гибели. Растительная пища выступала здесь в виде лимитирующего фактора. Эти факторы играют важнейшую роль в выживании и адаптации организмов.

5, Лимитирующие факторы.

Впервые на значение лимитирующих факторов указал немецкий агрохимик Ю. Либих в середине XIX в. Он установил закон минимума: урожай (продукция) зависит от фактора, находящегося в минимуме. Если в почве полезные компоненты в целом представляют собой уравновешенную систему и только какое-то вещество, например фосфор, содержится в количествах, близких к минимуму, то это может снизить урожай. Но оказалось, что даже те же самые минеральные вещества, очень полезные при оптимальном содержании их в почве, снижают урожай, если они в избытке. Значит, факторы могут быть лимитирующими, находясь и в максимуме. Таким образом, лимитирующими экологическими факторами следует называть такие факторы, которые ограничивают развитие организмов из-за недостатка или их избытка по сравнению с потребностью (оптимальным содержанием). Их иногда называют ограничивающими факторами. Что касается закона минимума Ю. Либиха, то он имеет ограниченное действие и только на уровне химических веществ. Р. Митчерлих показал, что урожай зависит от совокупного действия всех факторов жизни растений, включая температуру, влажность, освещенность и т. д. Различия в совокупном и изолированном действиях относятся и к другим факторам. Например, с одной стороны, действие отрицательных температур усиливается ветром и высокой влажностью воздуха, но, с другой — высокая влажность ослабляет действие высоких температур, и т. д. Однако, несмотря на взаимовлияние факторов; все-таки они не могут заменить друг друга, что и нашло отражение в законе независимости факторов В. Р. Вильямса: условия жизни равнозначны, ни один из факторов жизни не может быть заменен другим. Например, нельзя действие влажности (воды) заменить действием углекислого газа или солнечного света, и т. д. Наиболее полно и в наиболее общем виде всю сложность влияния экологических факторов на организм отражает закон толерантности В. Шел форда: отсутствие или невозможность процветания определяется недостатком (в качественном или количественном смысле) или, наоборот, избытком любого из ряда факторов, уровень которых может оказаться близким к пределам переносимого данным организмом. Эти два предела называют пределами толерантности.

Относительно действия одного фактора можно проиллюстрировать этот закон так: некий организм способен существовать при температуре от -5 °Сдо 25 °С, т. е. диапазон его толерантности лежит в пределах этих температур. Организмы, для жизни которых требуются условия, ограниченные узким диапазоном толерантности по величине температуры, называют стенотермными («стено» — узкий), а способных жить в широком диапазоне температур — эвритермными («эври» — ши-¦рокий)

Подобно температуре действуют и другие лимитирующие факторы, а организмы по отношению к характеру их воздействия называют, соответственно, стенобионтами и эврибион-тами. Например, говорят: организм стенобионтен по отношению к влажности, или эврибионтен к климатическим факторам, и т. п. Организмы, эврибионтные к основным климатическим факторам, наиболее широко распространены на Земле. Диапазон толерантности организма не остается постоянным — он, например, сужается, если какой-либо из факторов близок к какому-либо пределу, или при размножении организма, когда многие факторы становятся лимитирующими. Значит, и характер действия экологических факторов при определенных условиях может меняться, т. е. он может быть, а может и не быть лимитирующим. При этом нельзя забывать, что организмы и сами способны снизить лимитирующее действие факторов, создав, например, определенный микроклимат (микросреду). Здесь возникает своебразная компенсация факторов, которая наиболее эффективна на уровне сообществ, реже — на видовом уровне. Такая компенсация факторов обычно создает условия для физиологической акклиматизациивида-эврибиота, имеющего широкое распространение, который, акклиматизируясь в данном конкретном месте, создает своеобразную популяцию, эк^ тип, пределы толерантности которой соответствуют местным условиям. При более глубоких адаптационных процессах здесь могут появиться и генетические расы. Итак, в природных условиях организмы зависят от состояния критических физических факторов, от содержания необходимых веществ и от диапазона толерантности самих организмов к этим и другим компонентам среды.

Лимитирующий фактор

Лимитирующий фактор - фактор среды, выходящий за пределы выносливости организма. Лимитирующий фактор ограничивает любое проявление жизнедеятельности организма. С помощью лимитирующих факторов регулируется состояние организмов и экосистем.

Лимитирующие факторы. При анализе распределения отдельных организмов или целых сообществ экологи нередко обращаются к т. н. лимитирующим факторам. Исчерпывающее описание определенной среды не только невозможно, но и не нужно, поскольку распределение животных и растений (как по географическим зонам, так и по отдельным местообитаниям) может определяться всего одним фактором, например экстремальными (для данных организмов) температурами, слишком низкой (или слишком высокой) соленостью или недостатком пищи. Однако выделить такие лимитирующие факторы бывает нелегко, а попытки установить прямую связь между распределением организмов и каким-либо внешним фактором далеко не всегда удачны. Например, лабораторные опыты показывают, что некоторые животные, обитающие в солоноватых и морских водах, способны выносить изменения солености в широких пределах, а их кажущаяся приуроченность к узкому диапазону значений этого фактора определяется просто наличием в соответствующих местах подходящей пищи.

6, Влияние температуры на организмы.

важнейший из ограничивающих (лимитирующих) факторов. Пределами толерантности для любого вида являются максимальная и минимальная летальные температуры, за пределами которых вид смертельно поражают жара или холод (рис. 2.3). Если не принимать во внимание некоторые уникальные исключения, все живые существа способны жить при температуре между 0 и 50 °С, что обусловлено свойствами протоплазмы клеток.

На рис. 2.3 показаны температурные пределы жизни видовой группы, популяции. В «оптимальном интервале» организмы чувствуют себя комфортно, активно размножаются и численность популяции растет. К граничным участкам температурного предела жизни — «пониженной жизнедеятельности» - организмы чувствуют себя угнетенно. При дальнейшем похолодании в пределах «нижней границы стойкости» или увеличении жары в пределах «верхней границы стойкости» организмы попадают в «зону смерти» и погибают.

Этим примером иллюстрируется общий закон биологической стойкости(по Ламотту), применимый к любому из важных лимитирующих факторов. Величина «оптимального интервала» характеризует «величину» стойкости организмов, т. е. величину их толерантности к этому фактору, или «экологическую валентность». Адаптационные процессы у животных по отношению к температуре привели к появлению пойкилотермных и гомой-отермных животных. Подавляющее большинство животных являются пойкилотермными, т. е. температура их собственного тела меняется с изменением температуры окружающей среды: земноводные, пресмыкающиеся, насекомые и др. Значительно меньшая часть животных — гомойотермные, т. е. имеют постоянную температуру тела, независимую от температуры внешней среды: млекопитающие (в том числе и человек), имеющие температуру тела 36—37 °С, и птицы с температурой тела 40 °С. Активную жизнь при температуре ниже нуля могут вести только гомойотермные животные. Пойкилотермные хотя выдерживают температуру значительно ниже нуля, но при этом теряют подвижность. Температура порядка 40 °С, т. е. даже ниже температуры свертывания белка, для большинства животных предельна. Не меньшее значение температура играет в жизни растений. При повышении температуры на 10 ° С интенсивность фотосинтеза увеличивается в два раза, но лишь до 30—35 °С, затем его интенсивность падает, и при 40—45 °С фотосинтез вообще прекращается. При 50 °С большинство наземных растений погибает, что связано с интенсификацией дыхания растений при повышении температуры, а затем его прекращения при Температура влияет и на ход корневого питания у растений: этот процесс возможен лишь при условии, когда темпешр! тура почвы на всасывающих участках на несколько градусов ниже температуры наземной части растения. Нарушение этого равновесия влечет за собой угнетение жизнедеятельности растения и даже его гибель.