Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
динамические структуры.doc
Скачиваний:
10
Добавлен:
06.02.2016
Размер:
107.52 Кб
Скачать

1. Теоретическая часть

1.1 Ссылочные реализации структур данных

Большинство структур данных реализуется на базе массива. Все реализации можно разделить на два класса: непрерывные и ссылочные. В непрерывных реализациях элементы структуры данных располагаются последовательно друг за другом в непрерывном отрезке массива, причем порядок их расположения в массиве соответствует их порядку в реализуемой структуре. Рассмотренные выше реализации очереди и стека относятся к непрерывным.

В ссылочных реализациях элементы структуры данных хранятся в произвольном порядке. При этом вместе с каждым элементом хранятся ссылки на один или несколько соседних элементов. В качестве ссылок могут выступать либо индексы ячеек массива, либо адреса памяти. Можно представить себе шпионскую сеть, в которой каждый участник знает лишь координаты одного или двух своих коллег. Контрразведчикам, чтобы обезвредить сеть, нужно пройти последовательно по всей цепочке, начиная с выявленного шпиона.

Ссылочные реализации обладают двумя ярко выраженными недостатками: 1) для хранения ссылок требуется дополнительная память; 2) для доступа к некоторому элементу структуры необходимо сначала добраться до него, проходя последовательно по цепочке других элементов. Казалось бы, зачем нужны такие реализации?

Все недостатки ссылочных реализаций компенсируются одним чрезвычайно важным достоинством: в них можно добавлять и удалять элементы в середине структуры данных, не перемещая остальные элементы.

Массовые операции

Массовые операции — это операции, затрагивающие значительную часть всех элементов структуры данных. Пусть нужно добавить или удалить один элемент. Если при этом приходится, например, переписывать значительную часть остальных элементов с одного места на другое, то говорят, что добавление или удаление приводит к массовым операциям. Массовые операции — это бедствие для программиста, то, чего он всегда стремится избежать. Хорошая реализация структуры данных — та, в которой массовых операций либо нет совсем, либо они происходят очень редко. Например, добавление элемента должно выполняться за ограниченное число шагов, независимо от того, содержит ли структура десять или десять тысяч элементов.

В непрерывных реализациях добавление или удаление элементов в середине структуры неизбежно приводит к массовым операциям. Поэтому структуры, в которых можно удалять или добавлять элементы в середине, обязательно должны быть реализованы ссылочным образом.

Пример неудачного использования непрерывных реализаций — файловые системы в некоторых старых операционных системах, например, в уже упомянутой ОС ЕС или в системе РАФОС, применявшейся на СМ ЭВМ, на старых советских персональных компьютерах Электроника и т.п. В современных файловых системах файлы фрагментированы, т.е. кусочки большого файла, непрерывного с точки зрения пользователя,на самом деле могут быть разбросаны по всему диску. Раньше это было не так, файлы должны были обязательно занимать непрерывный участок на диске. При постоянной работе файлы уничтожались и создавались заново на новом месте — и всякое редактирование текстового файла приводило к его обновлению. В результате свободное пространство на диске становилось фрагментированным, т.е. состоящим из множества небольших кусков. Возникала ситуация, когда большой файл невозможно записать на диск: хотя свободного места в сумме много, нет достаточно большого свободного фрагмента. Приходилось постоянно выполять длительную и опасную процедуру сжатия диска, которая часто приводила к потере всех данных на нем.

      1. Список

Классический пример структуры данных последовательного доступа, в которой можно удалять и добавлять элементы в середине структуры, — это линейный список. Различают однонаправленный и двунаправленный списки (иногда говорят односвязный и двусвязный).

Элемены списка как бы выстроены в цепочку друг за другом. У списка есть начало и конец. Имеется также указатель списка, который располагается между элементами. Если мысленно вообразить, что соседние элементы списка связаны между собой веревкой, то указатель — это ленточка, которая вешается на веревку. В любой момент времени в списке доступны лишь два элемента — элементы до указателя и за указателем.

Рис. 1.

В однонаправленном списке указатель можно передвигать лишь в одном направлении — вперед, в направлении от начала к концу. Кроме того, можно установить указатель в начало списка, перед его первым элементом. В отличие от однонаправленного списка, двунаправленный абсолютно симметричен, указатель в нем можно передвигать вперед и назад, а также устанавливать как перед первым, так и за последним элементами списка.

В двунаправленном списке можно добавлять и удалять элементы до и за указателем. В однонаправленном списке добавлять элементы можно также с обеих сторон от указателя, но удалять элементы можно только за указателем.

Удобно считать, что перед первым элементом списка располагается специальный пустой элемент, который называется головой списка. Голова списка присутствует всегда, даже в пустом списке. Благодаря этому можно предполагать, что перед указателем всегда есть какой-то элемент, что упрощает процедуры добавления и удаления элементов.

В двунаправленном списке считают, что вслед за последним элементом списка вновь следует голова списка, т.е. список зациклен в кольцо.

Рис. 2.

Можно было бы точно так же зациклить и однонаправленной список. Но гораздо чаще считают, что за последним элементом однонаправленного списка ничего не следует. Однонаправленный список, таким образом, представляет собой цепочку, начинающуюся с головы списка, за которой следует первый элемент, затем второй и так далее вплоть до последнего элемента, а заканчивается цепочка ссылкой в никуда.

Рис. 3.