Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
«Металлы, металлургия, сплавы».doc
Скачиваний:
46
Добавлен:
16.12.2013
Размер:
240.13 Кб
Скачать

Мельхиор

[нем. Melchior, искажение франц. maillechort, от имени франц. изобретателей этого сплава Майо (Maillot) и Шорье (Chorier)], сплав меди главным образом с никелем (5-30%). М. - однофазный сплав, представляющий собой твёрдый раствор; хорошо обрабатывается давлением в горячем и холодном состоянии, после отжига имеет предел прочности около 400 Мн/м2 (40 кгс/мм2). Наиболее ценное свойство М. - высокая стойкость против коррозии в воздушной атмосфере, пресной и морской воде. Увеличенное содержание никеля, а также добавки железа и марганца обеспечивают повышенную коррозионную и кавитационную стойкость, особенно в морской воде и в атмосфере водяного пара. Сплав МНЖМц 30-0,8-1 (30% Ni, 0,8% Fe, 1% Mn) применяется в морском судостроении, в частности для изготовления конденсаторных труб. Благодаря никелю М., в отличие от латуней и бронз, имеет не желтоватый, а серебристый цвет, который в сочетании с высокой коррозионной стойкостью предопределил применение сплава МН19 (19% Ni) для изготовления посуды и др. изделий массового потребления, в том числе чеканных. Раньше М. называли не только медно-никелевые сплавы, но и сплавы меди с никелем и цинком (нейзильберы) и даже посеребрённую латунь, поэтому изделия из этих материалов часто называют мельхиоровыми.

Ртуть

(лат. Hydrargyrum), Hg, химический элемент II группы периодической системы Менделеева, атомный номер 80, атомная масса 200,59; серебристо-белый тяжёлый металл, жидкий при комнатной температуре. В природе Р. представлена семью стабильными изотопами с массовыми числами: 196 (0,2%), 198 (10,0%), 199 (16,8%), 200 (23,1%), 201 (13,2%), 202 (29,8%), 204 (6,9%).

Историческая справка. Самородная ртутьбыла известна за 2000 лет до н. э. народам Древней Индии и Древнего Китая. Ими же, а также греками и римлянами применялась киноварь (природная HgS) как краска, лекарственное и косметическое средство. Греческий врач Диоскорид (1 в. н. э.), нагревая киноварь в железном сосуде с крышкой, получил ртутьв виде паров, которые конденсировались на холодной внутренней поверхности крышки. Продукт реакции был назван hydrárgyros (от греч. hýdor - вода и árgyros - серебро), т. е. жидким серебром, откуда произошли латинские названия hydrargyrum, а также argentum vivum - живое серебро. Последнее сохранилось в названиях P. quicksilver (англ.) и Quecksilber (нем.). Происхождение русского названия ртутьне установлено. Алхимики считали ртуть главной составной частью всех металлов. "Фиксация" ртуть (переход в твёрдое состояние) признавалась первым условием её превращения в золото. Твёрдую ртуть впервые получили в декабре 1759 петербургские академик И. А. Браун и М. В. Ломоносов. Учёным удалось заморозить ртуть в смеси из снега и концентрированной азотной кислоты. В опытах Ломоносова отвердевшая ртуть оказалась ковкой, как свинец. Известие о "фиксации" ртуть произвело сенсацию в учёном мире того времени; оно явилось одним из наиболее убедительных доказательств того, что ртуть - такой же металл, как и все прочие.

Распространение ртуть в природе. ртуть принадлежит к числу весьма редких элементов, её среднее содержание в земной коре (кларк) близко к 4,5×10-6% по массе. Приблизительно в таких количествах она содержится в изверженных горных породах. Важную роль в геохимии ртуть играет её миграция в газообразном состоянии и в водных растворах. В земной коре ртуть преимущественно рассеяна; осаждается из горячих подземных вод, образуя ртутные руды (содержание ртуть в них составляет несколько процентов). Известно 35 ртутных минералов; главнейший из них - киноварь HgS.

В биосфере ртуть в основном рассеивается и лишь в незначительных количествах сорбируется глинами и илами (в глинах и сланцах в среднем 4×10-5%). В морской воде содержится 3×10-9% Р.

Самородная Р., встречающаяся в природе, образуется при окислении киновари в сульфат и разложении последнего, при вулканических извержениях (редко), гидротермальным путём (выделяется из водных растворов).

Физические и химические свойства ртуть - единственный металл, жидкий при комнатной температуре. Твёрдая ртуть кристаллизуется в ромбические сингонии, а = 3,463 , с = 6,706 ; плотность твёрдой ртуть 14,193 г/см3 (-38,9 °С), жидкой 13,52 г/см3 (20 °С), атомный радиус 1,57 , ионный радиус Hg2+ 1,10 ; tпл - 38,89 °С; tkип 357,25 °С; удельная теплоемкость при 0 °С 0,139 кдж/(кг ×К) [0,03336 кал/(г×°С)]; при 200 °С 0,133 кдж/(кг×К)[0,0319 кал/(г ×°С)]; температурный коэффициент линейного расширения 1,826×10-4 (0-100 °С); теплопроводность 8,247вт/(м×К) [0,0197 кал/(см×сек×°C) (при 20°C); удельное электросопротивление при 0°С 94,07×10-8 ом×м (94,07×10-6 ом×см). При 4,155 К ртуть становится сверхпроводником (см. Сверхпроводимость). ртуть диамагнитна, её атомная магнитная восприимчивость равна -0,19×10-6 (при 18 °С).

Конфигурация внешних электронов атома Hg 5d 106s2, в соответствии с чем при химических реакциях образуются катионы Hg2+ и Hg22+. Химическая активность ртуть невелика. В сухом воздухе (или кислороде) она при комнатной температуре сохраняет свой блеск неограниченно долго. С кислородом даёт 2 соединения: чёрную закись Hg2O и красную окись HgO. Hg2O появляется в виде чёрной плёнки на поверхности ртуть при действии озона. HgO образуется при нагревании Hg на воздухе (300-350 °С), а также при осторожном нагревании нитратов Hg (NO3)2 или Hg2(NO3)2. Гидроокись ртуть практически не образуется. При взаимодействии с металлами, которые ртуть смачивает, образуются амальгамы. Из сернистых соединений важнейшим является HgS, которую получают растиранием Hg с серным цветом при комнатной температуре, а также осаждением растворов солей Hg2+ сероводородом или сульфидом щелочного металла. С галогенами (хлором, иодом) ртуть соединяется при нагревании, образуя почти недиссоциирующие, в большинстве ядовитые соединения типа HgX2. В соляной и разбавленной серной кислотах ртуть не растворяется но растворима в царской водке, азотной и горячей концентрированной серной кислотах.

Почти все соли Hg2+ плохо растворимы в воде. К хорошо растворимым относится нитрат Hg (NO3)2.

Большое значение имеют хлориды Р.: Hg2Cl2 (каломель) и HgCl2 (сулема) Известны соли окисной ртуть цианистой и роданистой кислот, а также ртутная соль гремучей кислоты Hg (ONC)2, т. н. гремучая ртуть. При действии аммиака на соли образуются многочисленные комплексные соединения, например HgCI×2NH3 (плавкий белый преципитат) и HgNH2CI (неплавкий белый преципитат). Применение находят ртутьорганические соединения.

Получение ртути. Ртутные руды (или рудные концентраты), содержащие Р. в виде киновари, подвергают окислительному обжигу

HgS + O2 = Hg + SO2.

Обжиговые газы, пройдя пылеуловительную камеру, поступают в трубчатый холодильник из нержавеющей стали или монель-металла. Жидкая ртуть. стекает в железные приёмники. Для очистки сырую Р. пропускают тонкой струйкой через высокий (1-1,5м) сосуд с 10%-ной HNO3, промывают водой, высушивают и перегоняют в вакууме.

Возможно также гидрометаллургическое извлечение Р. из руд и концентратов растворением HgS в сернистом натрии с последующим вытеснением Р. алюминием. Разработаны способы извлечения Р. электролизом сульфидных растворов.

Применение. Р. широко применяется при изготовлении научных приборов (барометры, термометры, манометры, вакуумные насосы, нормальные элементы, полярографы, капиллярные электрометры и др.), в ртутных лампах, переключателях, выпрямителях; как жидкий катод в производстве едких щелочей и хлора электролизом, в качестве катализатора при синтезе уксусной кислоты, в металлургии для амальгамации золота и серебра, при изготовлении взрывчатых веществ; в медицине (каломель, сулема, ртутьорганические и другие соединения), в качестве пигмента (киноварь), в сельском хозяйстве (органические соединения Р.) в качестве протравителя семян и гербицида, а также как компонент краски морских судов (для борьбы с обрастанием их организмами). Р. и ее соединения токсичны, поэтому работа с ними требует принятия необходимых мер предосторожности.

Сурьма

(лат. Stibium), Sb, химический элемент V группы периодической системы Менделеева; атомный номер 51, атомная масса 121,75; металл серебристо-белого цвета с синеватым оттенком. В природе известны два стабильных изотопа 121Sb (57,25% ) и 123Sb (42,75% ). Из искусственно полученных радиоактивных изотопов важнейшие 122Sb (Т1/2 = 2,8 cym), 124Sb (T1/2 = 60,2 cym) и 125Sb (T1/2 = 2 года).

Распространение в природе. Среднее содержание С. в земной коре (кларк) 5 ×10–5 % по массе. В магме и биосфере С. рассеяна. Из горячих подземных вод она концентрируется в гидротермальных месторождениях. Известны собственно сурьмяные месторождения, а также сурьмяно-ртутные, сурьмяно-свинцовые, золото-сурьмяные, сурьмяно-вольфрамовые. Из 27 минералов С. главное промышленное значение имеет антимонит (Sb2S3). Благодаря сродству с серой С. в виде примеси часто встречается в сульфидах мышьяка, висмута, никеля, свинца, ртути, серебра и других элементов.

Физические и химические свойства. С. известна в кристаллической и трёх аморфных формах (взрывчатая, чёрная и жёлтая). Взрывчатая С. (плотность 5,64-5,97 г/см3) взрывается при любом соприкосновении: образуется при электролизе раствора SbCl3; чёрная (плотность 5,3 г/см3) - при быстром охлаждении паров С.; жёлтая - при пропускании кислорода в сжиженный SbH3. Жёлтая и чёрная С. неустойчивы, при пониженных температурах переходят в обыкновенную С. Наиболее устойчивая кристаллическая С., кристаллизуется в тригональной системе, а = 4,5064 ; плотность 6,61-6,73 г/см3(жидкой - 6,55 г/см3); tпл 630,5 °С; tкип1635-1645 °С; удельная теплоёмкость при 20-100 °С 0,210 кдж/(кг × К) [0,0498 кал/(г ×°С)]; теплопроводность при 20 °С 17,6 вт/м × К [0,042 кал/(см × сек × °С)].Температурный коэффициент линейного расширения для поликристаллической С. 11,5 ×10–6 при 0-100 °С; для монокристалла a1 = 8,1×10–6                                 a2 = 19,5×10–6 при 0-400 °С, удельное электросопротивление (20 °С) (43,045×10–6 ом×см). С. диамагнитна, удельная магнитная восприимчивость -0,66 ×10–6. В отличие от большинства металлов, С. хрупка, легко раскалывается по плоскостям спайности, истирается в порошок и не поддаётся ковке (иногда её относят к полуметаллам). Механические свойства зависят от чистоты металла. Твёрдость по Бринеллю для литого металла 325-340 Мн/м2 (32,5-34,0 кгс/мм2); модуль упругости 285-300; предел прочности 86,0 Мн/м2 (8,6 кгс/мм2). Конфигурация внешних электронов атома Sb5s25r3. В соединениях проявляет степени окисления главным образом +5, +3 и –3.

В химическом отношении С. малоактивна. На воздухе не окисляется вплоть до температуры плавления. С азотом и водородом не реагирует. Углерод незначительно растворяется в расплавленной С. Металл активно взаимодействует с хлором и др. галогенами, образуя сурьмы галогениды. С кислородом взаимодействует при температуре выше 630 °С с образованием Sb2O3. При сплавлении с серой получаются сурьмы сульфиды, так же взаимодействует с фосфором и мышьяком. С. устойчива по отношению к воде и разбавленным кислотам. Концентрированные соляная и серная кислоты медленно растворяют С. с образованием хлорида SbCl3 и сульфата Sb2(SO4)3; концентрированная азотная кислота окисляет С. до высшего окисла, образующегося в виде гидратированного соединения xSb2O5 ×уН2О. Практический интерес представляют труднорастворимые соли сурьмяной кислоты - антимонаты(МеSbO3 ×3H2O, где Me - Na, К) и соли не выделенной метасурьмянистой кислоты - метаантимониты (MeSbO2 ×ЗН2О), обладающие восстановительными свойствами. С. соединяется с металлами, образуя антимониды.

Получение. С. получают пирометаллургической и гидрометаллургической переработкой концентратов или руды, содержащей 20-60% Sb. К пирометаллургическим методам относятся осадительная и восстановительная плавки. Сырьём для осадительной плавки служат сульфидные концентраты; процесс основан на вытеснении С. из её сульфида железом: Sb2S3 + 3Fe Û 2Sb + 3FeS. Железо вводится в шихту в виде скрапа. Плавку ведут в отражательных или в коротких вращающихся барабанных печах при 1300-1400 °С. Извлечение С. в черновой металл составляет более 90%. Восстановительная плавка С. основана на восстановлении её окислов до металла древесным углем или каменноугольной пылью и ошлаковании пустой породы. Восстановительной плавке предшествует окислительный обжиг при 550 °С с избытком воздуха. Огарок содержит нелетучую четырёхокись С. Как для осадительной, так и для восстановительной плавок возможно применение электропечей. Гидрометаллургический способ получения С. состоит из двух стадий: обработки сырья щелочным сульфидным раствором с переводом С. в раствор в виде солей сурьмяных кислот и сульфосолей и выделения С. электролизом. Черновая С. в зависимости от состава сырья и способа её получения содержит от 1,5 до 15% примесей: Fe, As, S и др. Для получения чистой С. применяют пирометаллургическое или электролитическое рафинирование. При пирометаллургическом рафинировании примеси железа и меди удаляют в виде сернистых соединений, вводя в расплав С. антимонит (крудум) - Sb2S3, после чего удаляют мышьяк (в виде арсената натрия) и серу при продувке воздуха под содовым шлаком. При электролитическом рафинировании с растворимым анодом черновую С. очищают от железа, меди и др. металлов, остающихся в электролите (Си, Ag, Аи остаются в шламе). Электролитом служит раствор, состоящий из SbF3, H2SO4 и HF. Содержание примесей в рафинированной С. не превышает 0,5-0,8%. Для получения С. высокой чистоты применяют зонную плавку в атмосфере инертного газа или получают С. из предварительно очищенных соединений - трёхокиси или трихлорида.

Применение. С. применяется в основном в виде сплавов на основе свинца и олова для аккумуляторных пластин, кабельных оболочек, подшипников (баббит), сплавов, применяемых в полиграфии (гарт), и т. д. Такие сплавы обладают повышенной твёрдостью, износоустойчивостью, коррозионной стойкостью. В люминесцентных лампах галофосфатом кальция активируют Sb. С. входит в состав полупроводниковых материалов как легирующая добавка к германию и кремнию, а также в состав антимонидов (например, InSb). Радиоактивный изотоп 12Sb применяется в источниках g-излучения и нейтронов.

Кадмий

(Cadmium), Cd, химический элемент II группы периодической системы Менделеева; атомный номер 48, атомная масса 112,40; белый, блестящий, тяжёлый, мягкий, тягучий металл. Элемент состоит из смеси 8 стабильных изотопов с массовыми числами: 106 (1,215%), 108 (0,875%), 110 (12,39%), 111 (12,75%), 112 (24,07%), 113 (12,26%), 114 (28,86%), 116 (7,58%).

Историческая справка. В 1817 нем. химик Ф. Штромейер, при ревизии одной из аптек, обнаружил, что имевшийся там карбонат цинка содержит примесь неизвестного металла, который осаждается в виде жёлтого сульфида сероводородом из кислого раствора. Штромейер назвал открытый им металл кадмием (от греч. kadméia - нечистая окись цинка, также цинковая руда). Независимо от него нем. учёные К. Герман, К. Карстен и В. Мейснер в 1818 открыли К. в силезских цинковых рудах.

Распространение в природе. К. - редкий и рассеянный элемент с кларком литосферы 1,3×10-5 % по массе. Для К. характерны миграция в горячих подземных водах вместе с цинком и др. халькофильными элементами и концентрация в гидротермальных месторождениях. Минерал сфелерит ZnS местами содержит до 0,5-1% Cd, максимально до 5%. Реже встречается гринокит CdS. Концентрируется кадмий в морских осадочных породах - сланцах (Мансфельд, ГДР), в песчаниках, в которых он также связан с цинком и др. халькофильными элементами. В биосфере известны 3 очень редких самостоятельных минерала К. - карбонат CdCO3 (отавит), окись CdO (монтепонит) и селенид CdSe.

Физические и химические свойства. Кристаллическая решётка К. гексагональная, а = 2,97311 , с = 5,60694  (при 25 °С); атомный радиус 1,56 , ионный радиус Cd2+ 1,03 . Плотность 8,65 г/см3 (20 °С), tпл 320,9° С, tkип 767 °С, коэффициент термического расширения 29,8×10-6 (при 25 °С); теплопроводность (при 0 °C) 97,55 вт/(м×К) или 0.233 кал/(см×сек°С); удельная теплоёмкость (при 25 °С) 225,02 дж/(кг×К)или 0,055 кал/(г×°С); удельное электросопротивление (при 20°C) 7,4×10-8ом×м (7,4×10-6 ом×см); температурный коэффициент электросопротивления 4,3×10-3 (0-100 °С). Предел прочности при растяжении 64 Мн2(6,4 кгс/мм2), относительное удлинение 20%, твёрдость по Бринеллю 160 Мн/м2 (16 кгс/мм2).

В соответствии с внешней электронной конфигурацией атома 4d10 5s2 валентность К. в соединениях равна 2 (впрочем, имеются указания на образование ионов Cd22+ при растворении К. в расплавленном CdCl2). На воздухе К. тускнеет, покрываясь тонкой плёнкой окиси CdO, которая защищает металл от дальнейшего окисления. При сильном нагревании на воздухе К. сгорает в окись CdO - кристаллический порошок от светло-коричневого до темно-бурого цвета, плотность 8,15 г/см3; при 700 °С CdO возгоняется, не плавясь. К. непосредственно соединяется с галогенами; эти соединения бесцветны; CdCl2, CdBr2 и Cdl2 очень легко растворимы в воде (около 1 ч. безводной соли в 1 ч. воды при 20 °С), CdF2 растворим труднее (1 ч. в 25 ч. воды). С серой К. образует сульфид CdS от лимонно-жёлтого до оранжево-красного цвета, нерастворимый в воде и разбавленных кислотах. К. легко растворяется в азотной кислоте с выделением окислов азота и образованием нитрата, который даёт гидрат Cd (NO3)2×4H2O. Из кислот - соляной и разбавленной серной К. медленно выделяет водород, при выпаривании растворов из них кристаллизуются гидраты хлорида 2CdCl2×5H2O и сульфата 3CdSO4×8H2O. Растворы солей К. имеют кислую реакцию вследствие гидролиза; едкие щёлочи осаждают из них белую гидроокись Cd (OH)2, нерастворимую в избытке реактива; впрочем, при действии концентриров. растворов щёлочи на Cd (OH)2 были получены гидрооксокадмиаты, например Na2[Cd (OH)]. Катион Cd2+ легко образует комплексные ионы с аммиаком [Cd (NH3)4]2+ и с цианом [Cd (CN)4]2- и [Cd (CN)6]4-. Известны многочисленные основные, двойные и комплексные соли К. Соединения К. ядовиты; особенно опасно вдыхание паров его окиси.

Получение и применение. К. получают из побочных продуктов переработки цинковых, свинцово-цинковых и медно-цинковых руд. Эти продукты (содержащие 0,2-7% К.) обрабатывают разбавленной серной кислотой, которая растворяет окиси К. и цинка. Из раствора осаждают К. цинковой пылью; губчатый остаток (смесь К. и цинка) растворяют в разбавленной серной кислоте и выделяют К. электролизом этого раствора. Электролитический К. переплавляют под слоем едкого натра и отливают в палочки; чистота металла - не менее 99,98%.

Металлический К. применяют в ядерных реакторах, для антикоррозионных и декоративных покрытий, в аккумуляторах. К. служит основой некоторых подшипниковых сплавов, входит в состав легкоплавких сплавов. Легкоплавкие сплавы применяют для спайки стекла с металлом, в автоматических огнетушителях, для тонких и сложных отливок в гипсовых формах и др. Сульфид К. (кадмиевая жёлтая) - краска для живописи. Сульфат и амальгама К. используются в нормальном элементе Вестона.