Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Литература / Комар_строймат

.pdf
Скачиваний:
267
Добавлен:
11.02.2016
Размер:
16.51 Mб
Скачать

Рис. 6.9. бетоносмеситель С-773а:

а — общий вид; б — конструктивная схема; 1 — чаша; 2 — рама; 3 — смесительное устройство; 4 — мотор-редуктор; 5 — электрооборудование; 6 — затвор

свибрацией, а в некоторых конструкциях — только вибрацией. При соответствующем режиме вибрации, когда силы трения и сцепления между частицами смеси нарушены, а силам тяжести противодействует значительно превосходящее их давление возбуждения в смеси, последняя переходит во взвешенное состояние

свысокой подвижностью, что способствует интенсивному перемешиванию смеси.

Внастоящее время ведутся работы по струйному перемешиванию бетонной смеси, заключающемуся в интенсивном взаимодействии ее составляющих в турбулентных потоках псевдокипящего слоя, создаваемых энергосмесителями. К ним относятся сжатый воздух с давлением 0,3 МПа и перегретый пар с температурой 85...95 °С, подаваемые в специальный струйный смеситель.

211 —

Рис. 6.10. Бетоносмеситель непрерывного действия СМ-314:

1 — смесительный барабан; 2 — лопасти; 3 — воронка для подачи воды; 4 — воронка для загрузки компонентов; 5 — электродвигатель с редуктором

В технологию приготовления бетонной смеси начинает внедряться перемешивание с нагреванием смеси. Суть этого метода состоит в том, что разогрев бетонной смеси до 60...65 °С производят паром, подаваемым в смеситель в процессе ее перемешивания. Такое нагревание происходит равномерно, проще и во много раз быстрее, чем при предварительном нагреве воды и заполнителей, а также электроразогреве смеси.

Транспортирование бетонной смеси к месту укладки должно обеспечить сохранение ее однородности и степени подвижности. При длительной перевозке бетонная смесь загустевает вследствие гидратации цемента, поглощения воды заполнителями и испарения, однако подвижность смеси к моменту укладки ее должна быть не меньше проектной.

При выборе способа транспортирования необходимо учитывать дальность и скорость перевозки, подвижность смеси и экономичность способа. На заводах бетонные смеси транспортируют бетонораздатчиками, самоходными тележками, ленточными транспортерами; в цехах малой и средней мощности — электротельферами и электрокарами. Подвижные смеси можно транспортировать на большие расстояния по трубам с помощью пневматических установок. На строительные площадки, где ведутся бетонные работы, бетонную смесь доставляют в автобетоносмесителях, в которых бетонную смесь перемешивают примерно за 5 мин до прибытия на место.

Централизованное заводское изготовление бетонных смесей и их доставка на строительную площадку имеют большие техникоэкономические преимущества, поскольку смеси готовятся на полностью механизированных и автоматизированных заводах и имеют высокое качество, снижая их стоимость, и отпадает не-

— 212 —

Рис. 6.11. Бетоносмеситель принудительного перемешивания С-357 емкостью

1000 л:

1 — рама; 2 — привод; 3 — станина; 4 — разгрузочное устройство; 5 — неподвижные гребки; 6 — смесительная чаша; 7 — смесительные лопатки; 8 — очистной гребок

обходимость в организации сложного бетонного хозяйства на строительной площадке.

Завод на каждую партию бетонной смеси выдает паспорт с указанием состава бетона и его класса.

§ 6.6. Укладка бетонной смеси. Уход за бетоном и контроль качества

Укладка бетонной смеси и ее уплотнение являются одними из наиболее трудоемких и энергоемких операций. Эти операции в настоящее время выполняются с помощью бетоноукладчиков

— 213

или более простых машин бетонораздатчиков. Бетоноукладчики позволяют в большей степени механизировать процесс распределения бетонной смеси в форме. Бетонная смесь должна быть уложена в форме так, чтобы в ней не оставались свободные места; особенно тщательно нужно заполнять углы и суженные места формы. После укладки бетонной смеси производят уплотнение ее вибрированием, виброштампованием, центрифугированием, вакуумированием, прокатом (см. гл. 11).

Наиболее распространенным видом уплотнения бетонной смеси является вибрирование. Степень уплотнения бетонной смеси

спомощью вибраторов зависит в основном от частоты и амплитуды колебаний, а также продолжительности вибрирования.

Эффективность уплотнения бетонной смеси значительно возрастает при резонансных режимах виброуплотнения, при которых частота вынужденных колебаний частиц смеси совпадает

счастотой собственных колебаний вибратора, при этих условиях плотная укладка бетонной смеси достигается в короткое время. Для каждой бетонной смеси имеется своя оптимальная интенсивность вибрирования, которая достигается правильным сочетанием амплитуды и частоты колебаний. На заводах сборного железобетона жесткие и малоподвижные смеси целесообразно уплотнять на стационарных низкочастотных резонансных виброплощадках с амплитудой 0,7 мм и частотой 25...30 Гц, для подвижных мелкозернистых бетонов оптимальные амплитуды уменьшаются до 0,15...0,4 мм, при этом частота колебаний увеличивается до 50... 150 Гц.

По роду двигателя различают вибраторы электромеханиче-

ские, электромагнитные и пневматические; наиболее распростра-

нены электромеханические вибраторы. В зависимости от вида, формы и размеров бетонируемой конструкции применяют вибраторы различных типов.

Для укладки бетона с большими открытыми поверхностями

(полы, плиты, дороги) используют поверхностные вибраторы (рис. 6.12, а), передающие колебания бетонной смеси через металлическую площадку, к которой они прикреплены. Глубина распространения колебаний в толщу бетонной смеси достигает 20...30 см, продолжительность вибрирования на одном месте около 1 мин, после чего вибратор переставляют на смежный участок.

Глубинные вибраторы применяют при уплотнении бетонной смеси в массивных конструкциях большой глубины (толщины). В качестве глубинных вибраторов применяют: вибробулавы (рис. 6.12,б), в нижнем корпусе которых помещен электродвигатель с эксцентриковыми грузами, возбуждающими колебания булавы; высокочастотный (до 7000 кол/мин) вибратор с гибким валом (рис. 6.12, в), заканчивающийся тонкой цилиндрической рабочей частью, внутри которой расположен эксцентрик.

Для формования сборных железобетонных изделий широко используют стационарные виброплощадки различной грузо-

— 214 —

подъемности, собираемые из однотипных унифицированных виброблоков. Виброплощадки изготовляют с различными режимами работы: одночастотным с гармоническими вертикальными колебаниями, двухчастот-ным, виброударным и др.

На практике часто ис-

пользуют комбинированные способы уплотнения бетонной смеси. Так, при формовании железобетонных изделий из жестких и малоподвижных смесей применяют

вибрирование под нагрузкой. Рис. 6.12. Электровибраторы: а

При величине прессующегоповерхностный И-7: 1 — электродвигатель; 2

давления

поверхности

изделия— бронированный привод; 3 — площадка; б —

0,05...0,15

МПа

вибробулава; в

внутренний с

можновибронаконечником

И-21А:

1 — рабочий

применять

способнаконечник; 2 — электродвигатель; 3 — под-

вибропрессования.

ставка, 4 — гибкий вал

 

При центробежном способе формования для уплотнения бетонной смеси используют центробежную силу, возникающую при вращении формы. Частота вращения 400...900 об/мин, при этом бетонная смесь равномерно распределяется по стенкам формы и хорошо уплотняется; часть воды затворения (20...30%) отжимается к внутренней поверхности изделия, это способствует повышению плотности и водонепроницаемости. Такой способ формования применяют при изготовлении труб, полых колонн, опор и т. п.

Повысить качество бетона можно вакуумированием смеси, при этом из бетонной смеси извлекается часть избыточной воды и воздуха, одновременно под действием атмосферного давления бетонная смесь уплотняется, ускоряется твердение и повышается прочность бетона. Еще лучшие результаты дает повторное вибрирование после вакуумирования, при котором закрываются мелкие поры, образовавшиеся при вакуумировании.

Сумма мероприятий, обеспечивающих благоприятные условия твердения уплотненной бетонной смеси, а также способы, предохраняющие бетон от повреждения его структуры в раннем возрасте, составляют уход за бетоном. Организация ухода за бетоном должна быть проведена сразу после укладки и уплотнениябетоннойсмеси.

Прочность бетона нарастает в результате физико-химических процессов взаимодействия цемента с водой, которые нормально проходят в теплых и влажных условиях. Бетон при нормальных условиях постепенно набирает свою прочность и к 28 сут приобретает марочную прочность, причем в первые 3...7 сут прочность

— 215 —

бетона растет более интенсивно и на 7-е сутки составляет 60...

70% марочной (проектной) прочности. Для заводской технологии такие условия твердения бетона неприемлемы.

В заводской технологии применяют ускоренные методы твердения — тепловую обработку при обязательном сохранении влажности изделий. На заводах сборного железобетона чаще всего применяют прогрев изделий при атмосферном давлении

впаровоздушной среде с температурой 80...85 °С или выдерживание в среде насыщенного пара при 100 °С. Стремятся применять насыщенный пар, чтобы исключить высыхание бетона и создать хорошие условия для гидратации цемента.

На заводах сборного железобетона применяют также и другие способы тепловой обработки изделий: электропрогрев, контактный обогрев, обогрев в газовоздушной среде и др.

Правильно организованный контроль качества бетонных ра бот на всех стадиях технологического процесса изготовления бетонных конструкций — одно из важнейших условий получения прочного и долговечного бетона и снижения стоимости конструк ций. На предприятиях сборного железобетона применяют три вида контроля: входной, пооперационный и выходной. Контроль состоит в испытании и выборе исходных материалов для бетона,

вих дозировании и перемешивании, укладке, уплотнении и уходе за ним, а также в определении качества затвердевшего бетона испытанием пробных образцов.

Прочность и качество бетона в конструкции можно ориентировочно определить и без разрушения — с помощью акустических приборов. Сущность их действия основана на скорости распространения ультразвукового импульса или волны удара

вматериале и зависит от его плотности и прочности. Прочность бетона в конструкции без разрушения можно также определить и механическим способом, например прибором, действие которого основано на характеристике прочности, определяющейся глубиной лунки в бетоне, образованной шариком при его вдавливании, или величины отскока маятника от бетона.

§ 6.7. Особые свойства бетона

Высокая плотность бетона достигается рациональным подбором зернового состава заполнителей (с минимальной пустотностью), применением бетонных смесей с низким водоцементным отношением, интенсивным уплотнением, введением в бетонную смесь добавок (см. § 6.2). Даже выполнение указанных мероприятий не дает возможности получить абсолютно плотный бетон. Поры в бетоне образуются в результате испарения воды, не вступившей в химическую реакцию с цементом при его твердении, а также вследствие неполного удаления воздушных пузырьков при уплотнении бетонной смеси. Поэтому бетон является материалом газопроницаемым.

Водопроницаемость бетона характеризуется небольшим дав-

— 216 —

лением воды, при котором она еще не просачивается через

образец. Плотный бетон при мелкопористой структуре и достаточной толщине конструкции оказывается практически водонепроницаемым. По водонепроницаемости бетон делят на шесть марок: В2, В4, В6, В8, В10 и В12, выдерживающих соответственно давление 0,2; 0,4; 0,6; 0,8; 1,0 и 1,2 МПа. В более тонких конструкциях добиваются высокой водонепроницаемости бетона использованием гидрофобного цемента, а также применением водоизоляционных покрытий, наносимых на поверхность пневматическим способом (торкретированием).

Плотный бетон может быть непроницаем не только для воды, но и для жидких нефтяных продуктов вязкой консистенции — мазута и тяжелой нефти. Легкие средние нефтяные фракции, например бензин и керосин, проникают через бетон легче, чем вода. С целью защиты бетонных и железобетонных сооружений, предназначенных для хранения тяжелых нефтепродуктов, поверхности сооружений покрывают жидким стеклом, а от проникания легких и жидких нефтяных продуктов (бензина, керосина и др.) применяют специальные бензинонепроницаемые мембраны, поверхностные покрытия — пленки из пластмасс — или изготовляют бетон на непроницаемом для указанных жидкостей расширяющемся цементе.

Морозостойкость бетона характеризуется наибольшим числом циклов попеременного замораживания и оттаивания, которые способны выдерживать образцы 28-суточного возраста без

снижения предела прочности при сжатии более чем на 25% и без потери в массе более 5%. Морозостойкость является одним из главных требований, предъявляемых к бетону гидротехнических сооружений, дорожных покрытий, опор мостов и других подобных конструкций. Морозостойкость бетона зависит от его структуры. Для конструкций, подверженных в увлажненном состоянии попеременному замораживанию и оттаиванию, установлены следующие марки по морозостойкости: F50, 75, 100, 150, 200, З00, 400, 600. Марку бетона по морозостойкости выбирают в зависимости от климатических условий (числа перемен уровня воды на омываемой поверхности бетона или числа смен замораживания и оттаивания за зимний период). Морозостойкими оказываются, как правило, бетоны высокой плотности. Способы получения таких бетонов рассмотрены ранее. Не менее важную роль в морозостойкости бетона играет морозостойкость заполнителей. Марка заполнителей по морозостойкости должна быть не ниже этого показателя для бетона.

Бетон под нагрузкой ведет себя иначе, чем сталь и другие

упругие материалы. Область упругой работы бетона идет от на-

чала нагружения до напряжения сжатия, при котором по границе сцепления цементного камня с заполнителем образуются микротрещины, при дальнейшем нагружении микротрещины образуются уже в цементном камне и возникают пластические неупругие деформации бетона. Развитию пластических дефор-

2 1 7

Ползучесть бетона объясняют пластическими свойствами влажного цементного геля, а также возникновением и развитием микротрещин. Ползучесть зависит от вида цемента и заполнителей, состава бетона, его возраста, водоцементного отношения, влажности и условий твердения. Меньшая ползучесть у бетонов на высокомарочных цементах и плотных заполнителях. Легкие бетоны на пористых заполнителях имеют большую ползучесть, чем тяжелые.

В процессе твердения происходят объемные изменения бетона. Твердение бетона на воздухе, за исключением бетонов на безусадочном и расширяющемся цементах, сопровождается уменьшением объема, т. е. усадкой. При твердении бетона в воде вначале объем его несколько увеличивается и в воздушно-сухих условиях бетон дает усадку. Значительную усадку имеют бетоны из жидких смесей (с большим расходом цемента, а также водоцементным отношением). Наибольшая усадка в бетоне происходит в начальный период твердения — за первые сутки она составляет до 60...70% от месячной усадки. Объясняется это тем, что в указанный период особенно интенсивно обезвоживается тесто вследствие испарения и поглощения влаги гидратирующимися зернами цемента. В результате обезвоживания частицы сближаются между собой и цементный камень дает усадку.

Объемные изменения в бетоне в первый период твердения вызываются расширением от нагревания (иногда до 50 °С внутри массивных конструкций) в результате экзотермических реакций цемента с водой. Объемные изменениях бетона могут вызвать значительные деформации конструкций и даже появление трещин. Для предотвращения их в массивных бетонных конструкциях устраивают специальные температурные швы. Чтобы уменьшить экзотермию бетона, применяют цементы с малым выделением тепла. Величина усадки бетона на портландцементе зависит от минералогического состава и тонкости помола цемента. Усадка бетона возрастает с увеличением тонкости помола цемента.

Агрессивная среда и меры защиты от нее. Практика эксплуатации водопроводно-канализационных бетонных сооружений показала, что в ряде случаев под влиянием физико-химического действия жидкостей и газов бетон может разрушаться. Коррозия бетона вызывается главным образом разрушением цементного камня. Физико-химические процессы, происходящие при коррозии цемента, изложены в гл. 5. Коррозия бетона возникает в результате проникания агрессивного вещества в толщу бетона, и она особенно интенсивна при постоянной фильтрации такого вещества. Поэтому основной мерой предохранения бетона от коррозии является придание ему возможно большей плотности и правильное конструирование элементов сооружений, обеспечивающее равномерную (без образования трещин) деформацию бетона в процессе твердения.

Для предохранения бетона от коррозии следует применять цементы с минимальным выделением гидроксида кальция и

— 219 —

малым содержанием трехкальциевого алюмината. К таким цементам относятся высокопрочный портландцемент, портландцементы с гидравлическими добавками, шлакопортландцемент, глиноземистый и расширяющийся цементы. С целью устранения пор в поверхностных слоях бетона применяют импрегнирование в бетон цементного раствора, силикатирование, флюатирование. Защитить бетон от проникания агрессивных веществ можно с помощью поверхностных покрытий, облицовки их плотными керамическими плитками или камнями, выложенными на кислотоупорном цементе, созданием водонепроницаемой оболочки вокруг бетона из слоя жирной утрамбованной глины, покрытия гидроизоляционными битуминозными материалами и др.

Отношение к действию высоких температур. Бетон — огне стойкий материал, выдерживающий высокие температуры во время пожара. Огнестойкость бетона позволяет применять его для устройства дымовых труб промышленных печей, их фунда ментов.

Огнестойкость бетона зависит не только от вида цемента, но и природы заполнителей. Если в качестве заполнителей применяют горную породу, в состав которой входит кристаллический кварц, то при температуре около 600 °С в бетоне могут появиться трещины вследствие значительного увеличения объема кварца.

При проектировании бетонных конструкций, подвергающихся длительному воздействию температур, необходимо учитывать, что при температуре 150...250°С прочность бетона на портландцементе снижается на 25%. При нагревании бетона выше 500 °С и последующем увлажнении он разрушается. Вначале происходит дегидратация гидроксида кальция СА(ОН)2 → СаО + + Н2О, а затем при последующем увлажнении образовавшаяся СаО гасится с увеличением в объеме, что приводит к разрушению цементного камня и бетона.

Для строительных конструкций, подвергающихся длительному воздействию высоких температур (свыше 200 °С), применяют специальный жаростойкий бетон.

§ 6.8. Особенности бетонирования в зимнее время

Бетон, укладываемый зимой, необходимо предохранять от замерзания в течение срока твердения, необходимого для при обретения им 50%-ной проектной прочности. Обеспечения нор мальных условий твердения бетона зимой достигают двумя способами: использованием внутреннего тепла бетона и допол нительной подачей тепла бетона извне.

Внастоящее время зимнее бетонирование успешно внедрено

впрактику строительства СССР. Среди советских ученых, давших наиболее рациональные решения в области зимнего бетонирования, следует назвать проф. С. А. Миронова, В. Н. Сизова, И. Г. Совалова.

220 —

Соседние файлы в папке Литература