Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Литература / Комар_строймат

.pdf
Скачиваний:
267
Добавлен:
11.02.2016
Размер:
16.51 Mб
Скачать

Увеличение удельной поверхности цемента более ЗОО...

350 м2/кг связано со значительным снижением производительности мельниц; кроме того, такие цементы увеличивают водопотребность, растет тепловыделение, возрастают усадочные деформации. Водопотребность цемента определяется количеством воды (% от массы цемента), необходимым для получения теста нормальной густоты. Водопотребность портландцемента 24...28%, при введении активных минеральных добавок осадочного происхождения (диатомита, трепела, опоки) водопотребность повыша-

ется до З2...37%.

Влияние влажности и температуры среды. Твердение цемент-

ного камня и повышение его прочности могут продолжаться только при наличии в нем воды, так как твердение есть в первую очередь процесс гидратации.

Большое влияние на рост прочности цементного камня оказы-

вают влажность и температура среды. Скорость химических ре-

акций между клинкерными минералами и водой увеличивается с повышением температуры, а также значительно возрастает скорость уплотнения продуктов гидратации цемента. Твердение цементного камня на практике может происходить в широком диапазоне температур: нормальное твердение — при температуре 15...20°С, пропаривание — 80...90°С, автоклавная обработка — до 170...200°С, давление пара — до 0,8...1,2 МПа и твердение — при отрицательной температуре. Наиболее быстрый рост прочности цементного камня происходит при пропаривании под давлением в автоклавах, при этом бетон через 4...6 ч приобретает марочную прочность.

В условиях пропаривания при нормальном давлении твердение бетона происходит примерно в 2 раза медленнее, чем в автоклавах. Бетоны, подвергнутые тепловлажностной обработке при температуре до 100°С, в большинстве случаев приобретают только 70% проектной прочности и лишь иногда достигают 100%. Дальнейший рост их прочности, как правило, не наблюдается.

Твердения портландцементного камня при отрицательных температурах не происходит, так как вода превращается в лед. Однако за счет добавки СаСl2, NaCl или их смеси бетон все же набирает прочность. Добавление к цементу электролитов СаС12, NaCl в количестве 5% и более от массы цемента повышает концентрацию растворенных веществ в воде и понижает температуру ее замерзания. Кроме того, хлористые соли являются ускорителями твердения цемента. Однако применение этих солей в количестве более 2% в железобетонных конструкциях не рекомендуется из-за возможной коррозии арматуры. В последнее время в качестве противоморозной добавки используют нитрит натрия NaNO2.

Продолжительность хранения. Длительное хранение цемента даже в самых благоприятных условиях влечет за собой некоторую потерю его активности. После 3 мес хранения потеря актив-

6-707

_ 161 _

ности цемента может достигать 20%, а через год — 40%. Цементы более тонкого помола теряют больший процент активности, так как влага воздуха, соприкасаясь с цементом, вызывает преждевременную гидратацию цемента. Восстанавливать активность лежалого цемента можно вторичным помолом. Наиболее эффективен вибродомол цемента, в процессе которого повышается тонкость помола цемента, а также происходит обдирка гидратных и инертных оболочек с цементных зерен. Наиболее целесообразным методом предотвращения потери активности цемента является гидрофобизация.

Стойкость цементного камня. Бетон в инженерных сооруже-

ниях в процессе эксплуатации может быть подвержен агрессивному воздействию внешней среды: пресных и минерализованных вод, совместному действию воды и мороза, попеременному увлажнению и высушиванию. Среди компонентов бетона цементный камень наиболее подвержен развитию коррозионных процессов. Для того чтобы бетон стойко сопротивлялся агрессивному воздействию внешней среды, цементный камень должен быть коррозие-, морозо- и атмосферостойким.

Коррозия цементного камня в водных условиях по ряду ведущих признаков может быть разделена на три вида:

1 вид коррозии — разрушение цементного камня в результате растворения и вымывания некоторых его составных частей. Наиболее растворимой является гидроксид кальция, образующийся при гидролизе трехкальциевого силиката. Растворимость Са(ОН)2 невелика (1,3 г СаО на 1 л при 15°С), но из цементного камня в бетоне под воздействием проточных мягких вод количество растворенного и вымытого Са(ОН)2 непрерывно растет, цементный камень становится пористым и теряет прочность. Следует отметить, что Са(ОН)2 хорошо растворяется в водах, которые содержат в незначительном количестве катионы кальция и магния в виде бикарбонатов Са(НСО3)2 и Mg(HCO3)2, придающих воде временную жесткость.

Несколько предохраняет от данного вида коррозии защитная корка из углекислого кальция, образующаяся на поверхности бетона в результате реакции между гидроксидом кальция и углекислотой воздуха

Растворимость СаСО3 в воде почти в 100 раз меньше растворимости Са(ОН)2. Однако существенное повышение стойкости цементного камня в пресных водах достигается введением в цемент гидравлических добавок. Они связывают Са(ОН)2 в малорастворимое соединение — гидросиликат кальция:

Следующей мерой защиты бетона от I вида коррозии является применение цемента, выделяющего при своем твердении минимальное количество свободной Са(ОН)2. Таким цементом явля-

— 162 —

ется белитовый, содержащий небольшое количество трехкальцие-

вого силиката.

II вид коррозии — разрушение цементного камня водой, содержащей соли, способные вступать в обменные реакции с составляющими цементного камня. При этом образуются продукты, которые либо легкорастворимы и. уносятся фильтрующей через бетон водой, либо выделяются в воде аморфной массы, не обладающей связующими свойствами. В результате таких преобразований увеличивается пористость цементного камня и, следовательно, снижается его прочность.

Наиболее характерны среди упомянутых обменных реакций те, которые протекают под действием хлористых и сернокислых солей. Сернокислый магний, взаимодействуя с Са(ОН)2 цементного камня, образует гипс и гидроксид магния — аморфное вещество, не обладающее связностью и легко вымывающееся из бетона:

Образовавшийся хлористый кальций хорошо растворяется в воде и уносится фильтрующей водой.

Коррозия цементного камня водами, содержащими свободные

углекислоту и ее соли, происходит в такой последовательности. Вначале растворенная углекислота взаимодействует с Са(ОН)2

и образуется труднорастворимый углекислый кальций, что положительно сказывается на сохранности бетона. Однако при высоком содержании в воде СО2 углекислота действует разрушающе на цементный камень вследствие образования легкорастворимого бикарбоната кальция:

Приведенные реакции, схематически характеризующие разрушение цементного камня под действием воды, содержащей растворенные соли, показывают, что основной причиной этого разрушения является содержание в цементном камне (бетоне) свободного гидроксида кальция Са(ОН)2. Если же ее связать в другое труднорастворимое соединение, сопротивление бетона коррозии II вида должно возрасти. Это и имеет место при использовании активных минеральных добавок.

К /// виду коррозии относятся процессы, возникающие под действием сульфатов. В порах цементного камня происходит отложение малорастворимых веществ, содержащихся в воде, или продуктов взаимодействия их с составляющими цементного камня. Их накопление и кристаллизация в порах вызывают значи-

6*

— 1 6 3 —

тельные растягивающие напряжения в стенках пор и приводят к разрушению цементного камня.

Характерным видом сульфатной коррозии цементного камня является взаимодействие растворенного в воде гипса с трехкальциевым гидроалюминатом:

При этом образуется труднорастворимый гидросульфоалюминат кальция, который, кристаллизуясь, поглощает большое количество воды и значительно увеличивается в объеме (примерно в 2,5 раза), что оказывает сильное разрушающее действие на цементный камень.

В результате реакции образуются кристаллы в виде длинных тонких игл, напоминающих под микроскопом некоторые бациллы. Имея такое внешнее сходство и разрушающее действие на цементный камень, гидросульфоалюминат кальция получил название «цементная бацилла». Цемент с низким содержанием трехкальциевого алюмината должен обладать повышенной сульфатостойкостью.

Исключить или ослабить влияние коррозионных процессов при действии различных вод можно конструктивными мерами, путем улучшения технологии приготовления бетона и применения цементов определенного минералогического состава и необходимого содержания активных минеральных добавок.

Используя конструктивные меры, предотвратить действие воды на бетонную конструкцию возможно путем устройства гидроизоляции, водоотводов и дренажей. Повышение водостойкости бетона технологическими средствами достигается интенсивным уплотнением бетона при укладке или формовании, использованием бетонных смесей с минимальным водоцементным отношением, с тщательно подобранным зерновым составом заполнителей.

Роль активных минеральных добавок (трепела, опоки, диатомита, доменных гранулированных шлаков) в повышении водостойкости портландцемента рассмотрена ранее. Морозостойкость. Совместное попеременное действие воды и мороза влечет за собой разрушение бетонных сооружений. При отрицательных температурах вода, находящаяся в порах цементного камня, превращается в лед, который увеличивается в объеме примерно на 9% по сравнению с объемом воды. Лед давит на стенки пор и разрушает их.

Морозостойкость цементного камня зависит от минералогического состава клинкера, тонкости помола цемента и водоцементного отношения. До определенной тонкости помола (5000...

6000 см2/г) морозостойкость цемента увеличивается, но при дальнейшем возрастании тонкости помола морозостойкость падает. Это объясняется пористой структурой новообразований цемента сверхтонкого измельчения.

— 164 —

Присутствие в цементе в значительном количестве активных минеральных добавок отрицательно влияет на морозостойкость цементного камня вследствие высокой пористости их и низкой морозостойкости продуктов взаимодействия добавок с компонентами цементного камня. Среди минералов клинкера наименее морозостойким является С3А, поэтому его содержание в цементе для морозостойких бетонов не должно превышать 5...7%.

Увеличение водоцементного отношения понижает морозостойкость цементного камня вследствие повышения его пористости. Таким образом, для увеличения морозостойкости бетона необходимо применять цементы с низким содержанием С3А, с минимальным содержанием активных минеральных добавок и использовать бетонные смеси с возможно меньшим водоцементным отношением, тщательно уплотняя смесь при укладке.

Значительно повышают морозостойкость бетона поверхностноактивные добавки (СДБ, мылонафт). Пластифицирующие добавки СДБ существенно снижают водопотребность бетонных смесей при сохранении заданной подвижности и тем самым уменьшают пористость цементного камня. Некоторые гидрофоби-зующие добавки обладают воздухововлекающей способностью (пузырьки воздуха в бетонной смеси амортизируют давление льда), повышают однородность структуры цементного камня (придают водоотталкивающие свойства) и гидрофобизуют стенки пор и капилляров, увеличивая тем самым сопротивляемость цементного камня действию воды.

Надо иметь в виду, что замораживание цементного камня в начальный период твердения является наиболее опасным, так как он еще не обладает достаточной прочностью и не может энергично сопротивляться действию льда.

§ 5.11. Добавки для цементов

Добавки для цементов классифицируют по отношению к свойствам цемента и назначению. По этим показателям добавки делят на следующие группы: 1) компоненты вещественного состава (активные минеральные добавки), изменяющие наименование цементов и обладающие гидравлическими свойствами; 2) наполнители, улучшающие зерновой состав цемента и структуру цементного камня, не обладающие или частично обладающие гидравлическими свойствами; 3) технологические — интенсификаторы помола, регулирующие основные свойства цемента: сроки схватывания, твердение, прочность цемента, пористость цементного камня (воздухововлекающие), пластичность цементно-песчаного раствора и бетона (пластифицирующие добавки), водоудерживающую способность, уменьшающие смачивание водой поверхности частиц цемента (гидрофобизующие добавки); 4) регулирующие специальные свойства цемента: тепловыделение, объемные деформации, коррозионную стойкость, декоративные свойства и др.

— 165 —

§5.12. Портландцемент с органическими добавками

Всовременной технологии бетона широко используют поверх- ностно-активные добавки в количестве 0,05...0,3% от массы цемента.

Кгидрофильным добавкам относится сульфитно-дрожжевая бражка (СДБ), которая улучшает смачивание частиц цемента водой, при этом ослабляются силы взаимного сцепления между частицами вяжущего, повышаются пластичность цементного тес та и подвижность бетонной смеси.

Кгидрофобизующим добавкам относятся мылонафт, асидол,

синтетические жирные кислоты и их соли и кремнийорганические жидкости (ГКЖ-10, ГКЖ-11, ГКЖ-94). Мылонафт — натриевое мыло нафтеновых кислот. Синтетические жирные кислоты изготовляют путем окисления парафина. Жидкости ГКЖ-10 и ГКЖ-11 представляют собой водно-спиртовые растворы метил- и этилсиликоната натрия, способные смешиваться с водой. Кремнийорганическая жидкость ГКЖ-94 — продукт гидролиза этилдихлорсилана, ее применяют в виде водной эмульсии.

Кдобавкам-микропенообразователям относятся абиетат нат рия и омыленный древесный пек. Абиетат натрия получают омылением канифоли едким натром. Омыленный древесный пек представляет собой нейтрализованные щелочью смоляные кисло ты древесного пека хвойных пород.

Комплексные добавки обычно состоят из гидрофилизующих

игидрофобизующих поверхностно-активных веществ.

Синтетические химические добавки— суперпластификаторы

(С-3, 40-03 и др.) — в последнее время получают все большее применение в технологии бетона. Они оказывают повышенное пластифицирующее действие на бетонные смеси, улучшают структуру и повышают прочность и морозостойкость бетона.

Пластифицированныйпортландцемент отличается отобыкно венного содержанием поверхностно-активной пластифицирующей добавки. СДБ в количестве до 0,25% (в расчете на сухое веще ство) повышает подвижность и удобоукладываемость бетонной смеси и придает затвердевшим бетонам высокую морозостой кость. В качестве пластифицирующих добавок применяют СДБ, которую можно вводить как при помоле цемента, так и непосред ственно в бетонную смесь во время ее приготовления. Молеку лы СДБ образуют вокруг цементных зерен водные оболочки, выполняющие роль гидродинамической смазки, уменьшающей трение между зернами, благодаря чему повышается пластич ность цементного теста. За счет пластифицирующего действия добавки появляется возможность снижения В/Ц в бетоне на 5...10%. Если же сохранить В/Ц, то можно снизить расход це мента (примерно на 10...18%) без ухудшения качества бетона. Внедрение пластифицирующих добавок не приводит к созданию новых видов цемента, а лишь придает исходному дополнитель ные свойства (более высокую пластичность). Поэтому пластифи-

— 166 —

цированные цементы могут применяться наряду с обыкновенными, обеспечивая получение более удобоукладываемых бетонных смесей и морозостойких бетонов.

Гидрофобный портландцемент отличается от обыкновенного содержанием поверхностно-активной гидрофобизующей добавки: мылонафта, асидола, асидол-мылонафта, олеиновой кислоты или окислительного петролатума, нафтеновой кислоты и ее соли, син тетических жирных кислот и их кубовых остатков, кремнийорганических полимеров и др. Эти вещества вводят в количестве 0,1 ...0,2% от массы цемента в расчете на сухое вещество до бавки. Гидрофобизующие добавки образуют на зернах цемента тонкие (мономолекулярные) пленки, уменьшающие способность цемента смачиваться водой. Такой цемент, находясь во влажных условиях, сохраняет активность и не комкуется. В то же время в процессе перемешивания бетонной смеси адсорбционные пленки сдираются с поверхности цементных зерен и не препятствуют нормальному твердению цемента. В процессе приготовления бето нов некоторые гидрофобизующие добавки вовлекают в бетонную смесь большое количество мельчайших пузырьков воздуха — до 30...50 л на 1 м3 бетонной смеси (3...5% по объему). Вовле ченный воздух или, если нет добавочного воздухововлечения, адсорбционные слои, активные в смазочном отношении, улучша ют подвижность и удобоукладываемость смеси, а наличие в отвердевшем бетоне мельчайших замкнутых пустот способствует повышению морозостойкости бетона. Гидрофобный цемент отли чается и более высокими водостойкостью и водонепроницае мостью.

§ 5.13. Специальные виды цемента

Быстротвердеющий портландцемент (БТЦ) — портландце мент с минеральными добавками, отличающийся повышенной прочностью через 3 сут твердения. Его выпускают М400 и 500. БТЦ обладает более интенсивным, чем обычный, нарастанием прочности в начальный период твердения. Это достигается путем более тонкого помола цемента (до удельной поверхности 3500...

4000 см2/г), а также повышенным содержанием трехкальциевого силиката и трехкальциевого алюмината (60...65%). В остальном свойства его не отличаются от свойств портландцемента. БТЦ применяют в производстве железобетонных конструкций, а также при зимних бетонных работах. Ввиду повышенного тепловыде ления его не следует использовать в массивных конструкциях.

Сульфатостойкий портландцемент применяют для получения бетонов, работающих в минерализованных и пресных водах. Его получают из клинкера нормированного минералогического соста ва. Содержание С3S не более 50%, С3А не более 5% и сумма С3А-С4АF не более 22%. Введение инертных и активных мине ральных добавок не допускается. Этот цемент, являясь по суще ству белитовым, обладает несколько замедленным твердением

— 167 —

в начальные сроки и низким тепловыделением. Сульфатостойкий портландцемент выпускают М400. Остальные требования к нему предъявляются такие же, как и к портландцементу. Сульфатостойкий портландцемент используют для получения бетонов, находящихся в минерализованных и пресных водах.

Сульфатостойкийпортландцементсминеральнымидобавками

выпускают М400 и 500. В качестве минеральной добавки вводят 10...20% от массы цемента гранулированный доменный шлак или электротермофосфорный шлак или 5... 10% активных минераль ных добавок осадочного происхождения (кроме глиежа). Клинкер для производства этого цемента не должен содержать соответ ственно более 5% С3А и MgO, а сумма С3А и C4AF не должна превышать 22%.

Сульфатостойкий шлакопортландцемент выпускают М300

и400. Его получают путем совместного тонкого помола клинкера

игранулированного доменного шлака в количестве 21...60% и небольшого количества гипса. В этом цементе содержание в клинкере С3А ограничивается до 8%, MgO — до 5%.

Пуццолановый портландцемент выпускают М300 и 400. Его получают путем совместного помола клинкера и 25:..40% от мас сы цемента активных минеральных добавок и гипсового камня. Клинкер для пуццоланового цемента не должен содержать бо лее 8% С3А и не более 5% MgO. В остальном свойства его не отличаются от свойств портландцемента.

Белый портландцемент получают из сырьевых материалов, имеющих минимальное содержание окрашивающих оксидов (же леза, марганца, хрома). В качестве сырьевых материалов исполь зуют «чистые» известняки или мраморы и белые каолиновые глины, а в качестве топлива — газ или мазут, не загрязняющие клинкер золой. Помол цемента производят более тонкий: остаток на сите с сеткой № 008 должен быть не более 12%. Основным свойством белого цемента, определяющим его качество как деко ративного материала, является степень белизны. По этому пока зателю белый цемент разделяют на три сорта: I, II и III . По прочности белый цемент выпускают М400 и 500. Портландцемент высшей категории качества должен обладать стабильными пока зателями прочности при сжатии, коэффициент вариации прочно сти портландцемента М400 не более 5%, а М500 не более 3%. Начало схватывания белого цемента должно наступать не ра нее 45 мин, конец — не позднее 12 ч. Тонкость помола портланд цемента должна быть такой, чтобы при просеивании сквозь сито

ссеткой № 008 проходило не менее 88% массы просеиваемой пробы. Транспортируют и хранят белый цемент только в закры той таре.

Цветные портландцемента получают путем совместного помо ла клинкера белого цемента со свето- и щелочестойкими мине ральными красителями: охрой, железным суриком, ультрамари ном, оксидом хрома, сажей. П. И. Боженов предложил для получения цветных цементов в процессе приготовления сырьевой

168 —

смеси вводить оксиды некоторых металлов (0,05...1,0%). Эффективное окрашивание дают оксиды хрома (желто-зеленый цвет), марганца (голубой или бархатно-черный), кобальта (коричневый). При этом получают цементы клинкеров редких цветов, трудно достигаемых при смешивании с пигментами. Цветные цементы производят трех марок: З00, 400 и 500.

Белые и цветные цементы применяют для изготовления цветных бетонов, растворов отделочных смесей и цементных красок.

Тампонажный портландцемент изготовляют измельчением портландцементного клинкера, гипса с добавками или без них. Тампонажные цементы на основе портландцементного клинкера по вещественному составу в зависимости от содержания и вида добавок подразделяются на: тампонажный портландцемент бездобавочный, тампонажный портландцемент с минеральными добавками и тампонажный портландцемент со специальными добавками, регулирующими свойства цемента. Тампонажные цементы применяют для цементирования нефтяных газовых и специальных скважин. Тампонажный портландцемент бездобавочный применяют в условиях нормальных и умеренных температур (15...100°С) и нормальной плотности цементного теста (1650...

1950 кг/м3). Требования по устойчивости к воздействию агрессивных пластовых вод и объемным деформациям при твердении не предъявляются. К портландцементам с минеральными добавками или со специальными добавками, или в совокупности с минеральными и специальными добавками предъявляются требования по температуре применения, по средней плотности цементного теста и устойчивости тампонажного камня к агрессивности пластовых вод (сульфатная, кислая, углекислая, сероводородная, магнезиальная и полиминеральная).

§5.14. Цементы с минеральными добавками

Кэтой группе гидравлических вяжущих веществ принадлежат цементы, получаемые совместным помолом портландцементного клинкера и активной минеральной добавки или тщательным смешиванием указанных компонентов после раздельного измельчения каждого из них. В зависимости от вида исходного вяжущего компонента и добавки цементы с активными минеральными добавками делят на пуццолановые и шлакопортландцементы.

Активными минеральными (гидравлическими) добавками называют природные или искусственные вещества, которые при смешивании в тонкоизмельченном виде с известьюпушонкой и затворении водой придают ей гидравлические свойства, а при смешивании с портландцементом повышают его водостойкость. Гидравлические добавки в порошкообразном состоянии, будучи смешаны с водой, самостоятельно не затвердевают. Активные минеральные добавки подразделяют на природные и искусственные (табл. 5.11).

169 —

Активные минеральные добавки содержат вещество, способное в обычных условиях вступать в химическое взаимодействие с гидратом оксида кальция и давать труднорастворимые продукты реакции. В диатомитах, трепелах и других добавках осадочного происхождения этим веществом является водный кремнезем, а в вулканических и искусственных — преимущественно алюмосиликаты.

Минеральная добавка считается активной, если она обеспечивает конец схватывания теста, приготовленного на основе добавки и извести-пушонки, не позднее 7 сут после затворения и обеспечивает водостойкость образца не позднее 3 сут после конца его схватывания. Активность минеральных добавок характеризуется также количеством СаО, поглощенной из раствора на 1 г добавки в течение 30 сут. Отдельные виды минеральных добавок имеют активность не менее (мг/л): трепелы и диатомиты — 150, трассы — 60, пемзы, туфы, пеплы — 50, глие-

жи — 30.

Таблица 5.11. Активные минеральные добавки

Пуццолановый портландцемент — гидравлическое вяжущее вещество, получаемое путем совместного тонкого измельчения клинкера, необходимого количества гипса (до 3,5%) и активной минеральной добавки или тщательным смешиванием раздельно

измельченных тех же материалов. Добавок вулканического про-

исхождения — обожженной глины, глиежа или топливной золы — вводят 25...40% от массы цемента, а добавок осадочного происхождения диатомитов, трепелов — 20...30%. В зависимости от активности гидравлической добавки и минералогического состава

— 170 —

Соседние файлы в папке Литература