Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции ядер безопас.doc
Скачиваний:
122
Добавлен:
13.02.2016
Размер:
784.38 Кб
Скачать

Тема 7.Аварии на радиационно-опасных объектах

Цель: Ознакомление с радиационно-опасными объектами

Вопросы к теме

1.Защита населения и территорий при авариях на радиационно- опасных объектах с выбросом радиоактивных веществ в окружающую среду

2. Воздействие ионизирующих излучений на населе­ние

3. Воздействие ионизирующих излучений на окру­жающую среду

4. Радиационно (ядерно) опасные объекты и характер аварий на них

Защита населения и территорий при авариях на радиационно-опасных объектах с выбросом радиоактивных веществ в окружающую среду

За последние четыре десятилетия атомная энергети­ка и использование расщепляющихся материалов проч­но вошли в жизнь человечества. В настоящее время в мире работает около 450 ядерных реакторов. Атомная энергетика позволила существенно снизить «энергети­ческий голод» и оздоровить экологию в ряде стран. Так, во Франции более 75 % электроэнергии получают от АЭС и при этом количество углекислого газа, поступаю­щего в атмосферу, удалось сократить в 12 раз.

В условиях безаварийной работы АС атомная энергетика пока самое экономичное и экологически чистое производство энергии, и альтернативы ей в ближайшем будущем не предвидится. Радиоактив­ные вещества широко используются также и в других областях. Расширение сферы применения источни­ков радиоактивности ведет к увеличению риска воз­никновения аварий с выбросом радиоактивных ве­ществ и загрязнением окружающей среды. В резуль­тате таких аварий могут возникать обширные зоны радиоактивного загрязнения местности и происхо­дить облучение персонала радиационно (ядерно) опасных объектов (РОО и ЯОО) и населения, что бу­дет характеризовать создающуюся ситуацию как чрезвычайную. Подобные аварии будут носить ха­рактер радиационных и ядерных.

Общие сведения о радиоактивности и радиоактивном загрязнении окружающей среды

Под радиоактивностью понимается самопроизволь­ное превращение неустойчивых атомных ядер радиоак­тивных веществ в ядра других радиоактивных веществ, сопровождаемое ионизирующим излучением.

Под радиоактивными веществами понимаются ве­щества, содержащие изотопы (атомы одного и того же элемента, имеющие разное количество протонов и нейтронов, способных к самопроизвольному распаду).

Радиоактивность, наблюдающаяся у ядер элемен­тов в природных условиях, называется естественной, а у изотопов, полученных в результате ядерных реак­ций, — искусственной.

Явление радиоактивности используется в экономи­ке, атомной энергетике, медицине, военной сфере. В условиях «мирного атома» осуществляется управ­ляемая реакция деления ядер атомов, с помощью, кото­рой достигается нужный результат. В военной сфере (ядерное оружие) создаются усло­вия неуправляемой цепной реакции с выходом значи­тельного количества энергии различного характера в минимальное время (ядерный взрыв).

Под радиоактивным загрязнением окружающей среды понимается наличие в элементах биосферы ра­диоактивных веществ, ионизирующее излучение ко­торых создает радиационный фон, превышающий нормы радиационной безопасности населения.

Радиоактивное загрязнение окружающей среды различной степени может происходить при авариях на радиационно (ядерно) опасных объектах, в условиях проведения актов ядерного терроризма, а также в воен­ное время при применении ядерного оружия.

Ионизирующие излучения — квантовые (электро­магнитные) или корпускулярные (поток элементарных Частиц) излучения; под воздействием которых в среде из нейтральных атомов и молекул образуются положи­тельно или отрицательно заряженные частицы — ионы.

При искусственно вызванном распаде ядер вещест­ва (ядерный взрыв, работа ядерного реактора или ускорителя электронных частиц и т. д.) имеет место, также нейтронное излучение.

Число пар ионов, создаваемых ионизирующими излучениями в данной среде, отнесенное к единице расстояния, характеризует ее удельную ионизацию, а расстояние, пройденное от места их образования до места потери частицей избыточной энергии, — длину ее пробега. Эти характеристики зависят от энергии ча­стиц, их размеров, скорости, а также от среды (веще­ства), в которой они перемещаются.

Радиоактивность, наблюдающаяся у ядер элемен­тов, существующих в природных условиях, называет­ся естественной, а у изотопов, полученных в результа­те ядерных реакций, — искусственной.

Виды ионизирующих излучений. Радиоактивные вещества в ходе их распада испускают альфа-, бета-ча­стицы, гамма-излучения и нейтроны.

Альфа-частицы — это тяжелые положительно за­ряженные ядра гелия, обладающие высокой ионизи­рующей, но крайне слабой проникающей способно­стью. Длина их пробега в воздухе составляет 2,5 см, а в биологической ткани — 31 мкм.

Бета-частицы — электроны, имеющие меньшую, чем у альфа-частиц, ионизирующую, но большую проникаю­щую способность. Длина их пробега в воздухе более 15 см. Вместе с тем они в значительной степени задержи­ваются одеждой, обувью и кожным эпителием человека.

Гамма и рентгеновское излучение — электромагнит­ные излучения высокой энергии и сравнительно слабой ионизирующей способности. Они могут проходить сотни метров в воздухе, проникать через преграды из вещества с большой плотностью, в том числе и через тело человека.

Нейтронное излучение — поток электрически нейт­ральных частиц — нейтронов, способных вследствие это­го беспрепятственно проникать вглубь атомов облучае­мого вещества. Достигая ядер атомов, нейтроны либо по­глощаются ими, либо рассеиваются на них, теряя значительную часть энергии и скорость. Особенно боль­шое количество энергии (до 50 %) нейтроны теряют при столкновении с почти равными им по весу ядрами атомов элементов. Поэтому вещества, имеющие минимальное количество электронов вокруг ядра (вода, графит, азот), широко используются как для защиты от нейтронного из­лучения, так и для замедления движения нейтронов.

Нейтронный поток, так же как и гамма-излучение, обладает большой проникающей способностью через различные вещества и преграды, в том числе и через тело человека. При этом в результате облучения нейтронами атомных ядер химических элементов окружающей сре­ды возникает наведенная радиация, когда последние сами становятся источниками ионизирующих излучений.

К критериям ионизирующего излучения относятся: критерии источника ионизирующего излучения, крите­рии ионизирующего поля, создаваемого этим источником и характеризующего степень радиоактивного загрязне­ния окружающей среды, а также дозовые критерии, поз­воляющие определить возможную степень облучения человека, находящегося в ионизирующем поле.

В целях более системного восприятия критериев ионизирующих излучений они рассматриваются в ви­де таблицы.

Пояснения к таблице критериев

Активность и период полураспада радионуклидов связаны обратной зависимостью: чем меньше период полураспада радионуклида, тем выше его активность. Поглощенная доза (В) является основной дозимет­рической единицей, так как единицы измерения по­глощенной дозы и ее мощности используются в пока­заниях всех дозиметрических приборов.

Экспозиционная доза (X) — частный случай погло­щенной дозы по ионизации воздуха. Согласно ГОСТу РД 50 — 454 — 84 использование экспозиционной дозы и ее производных после 01.01.90 г. не рекомендуется. Однако в дозиметрических приборах выпуска до 1990 г., которые все еще широко используются на практике, основной дозиметрической величиной явля­лась экспозиционная доза и единицы ее измерения. Кроме того, единицы экспозиционной дозы продолжа­ют использоваться в публикациях СМИ. Поэтому в приведенной таблице экспозиционная доза включе­на в число рассматриваемых дозовых критериев.

Эквивалентная доза (НТК) используется для опре­деления биологического воздействия на организм человека различных видов излучения, поскольку погло­щенная и экспозиционная дозы характеризуют лишь фотонные излучения, в то время как тяжесть наруше­ний в организме зависит от всех видов излучений и наибольший ущерб его состоянию наносят именно корпускулярные излучения (ос-частицы и нейтроны). Эквивалентная доза рассчитывается как произведе­ние поглощенной дозы (В) на взвешивающий коэффи­циент вида излучения (WR), составляющий: для фото­нов и электронов любых энергий — 1; для α-частиц, ос­колков деления и тяжелых ядер — 20 и для нейтронов, в зависимости от их энергии, — 5 — 20.

Эффективная эквивалентная доза (Нэф) учитывает различную чувствительность отдельных органов челове­ка к облучению. Рассчитывается как сумма произведе­ний доз, полученных каждым органом Т), на соответст­вующий взвешивающий коэффициент(WТ), учитываю­щий различную чувствительность органов к измерению. Взвешивающие коэффициенты (WТ) составляют: для гонад — 0,20; для костного мозга, толстого кишеч­ника, легких и желудка — по 0,12; для мочевого пузы­ря, грудной железы, печени, пищевода и щитовидной железы — по 0,05; для кожи и клеток костных поверх­ностей — 0,01 и для остальных органов (суммарно) — 0,05. Сумма взвешивающих коэффициентов организ­ма составляет единицу (ΣWТ= 1).

Источники ионизирующих излучений. Все источни­ки ионизирующих излучений делятся на природные (ес­тественные) и техногенные, связанные с деятельностью человека (схема 1). К естественным источникам от­носятся космические источники и природные радионук­лиды, создающие природный радиационный фон, за счет которого человек получает за год дозу около 1,5 мЗв. Ис­точники ионизирующих излучений техногенного харак­тера можно условно разделить на технологические (даю­щие ионизирующие излучения как побочный продукт) и генерирующие (специально генерирующие ионизиру­ющее излучение). Излучения техногенного характера дают среднегодовую дозу около 1 мЗв. В целом среднее значение суммарной годовой дозы за счет излучения ее тественных и техногенных источников составляет 2 — 3 мЗв. Это так называемый естественный техногенмо измененный радиационный фон (радиационный фон).

Воздействие ионизирующих излучений на населе­ние.

Облучение, не превышающее значений нормально­го радиационного фона, не оказывает влияния на здоро­вье людей. Однако если облучение вызвано ионизирую­щим излучением, превышающим значения нормального фона, его воздействие может вызвать серьезные забо­левания и даже лучевую болезнь, вплоть до летального исхода.

Вредное воздействие ионизирующего излучения на человеческий организм возможно в результате как внешнего облучения, когда источник излучения нахо­дится вне организма, так и внутреннего, возникающе­го при попадании радиоактивных веществ внутрь ор­ганизма (с пищей, пылью или водой). При этом в ре­зультате внешнего облучения человек подвергается воздействию ионизирующего излучения только во время пребывания его вблизи от источника излучения. Внутреннее облучение действует длительно, до тех пор, пока радиоактивные вещества не будут выведены яз организма естественным путем или в результате ра­диоактивного распада.

Последствия облучения организма заключаются в разрыве молекулярных связей; в изменении химиче­ской структуры соединений, входящих в состав орга­низма; в образовании химически активных радикалов, обладающих высокой токсичностью; в нарушении структуры генного аппарата клетки. В результате изме­няется наследственный код и происходят мутагенные изменения, приводящие к возникновению и развитию злокачественных образований, к наследственным забо­леваниям, к врожденным порокам развития детей и по­явлению мутантов в последующих поколениях. Все они могут быть разделены на соматические, когда эффект облучения возникает у облученного, и наследственные, если он проявляется у потомства.

Характер действия ионизирующих излучений на организм зависит от величины поглощенной дозы, времени облучения, мощности дозы, площади или объема облучаемых тканей и органов и вида облуче­ния. Опасными являются любые дозы облучения, да­же на уровне фоновых. При малых дозах облучения биологический эффект носит стохастический (ве­роятностный) характер, причем вероятность его про­порциональна дозе, но не имеет дозового порога, а тя­жесть заболевания не зависит от нее. При относи­тельно больших дозах облучения биологический эффект носит нестохастический характер, когда име­ется наличие дозового порога, выше которого тя­жесть поражения уже зависит от величины дозы. Учитывая это обстоятельство, а также то, что вероят­ность заболевания при малых дозах облучения (в це­лом) крайне мала, при рассмотрении вопросов защи­ты населения имеется в виду в основном нестохасти­ческий характер облучения, когда отрицательные последствия облучения могут быть предотвращены установлением порога дозы.

Фактор времени имеет важнейшее значение для по­следствий облучения в связи с процессом восстановле­ния, протекающим в тканях и органах. При малой мощности дозы скорость развития поражений соизмерима со скоростью восстановительных процессов. С увели­чением мощности дозы процессы восстановления от­стают от разрушительных процессов, а это приводит к ускоренному развитию лучевой болезни.

По характеру распределения дозы во времени раз­личают острое и пролонгированное, одноразовое и фракционированное облучение. Под острым пони­мают кратковременное облучение при высокой мощ­ности дозы (децигрей в минуту и более), под пролон­гированным — относительно продолжительное облу­чение при низкой мощности дозы (доли грея в час и менее).

Как острое, так и пролонгированное облучение мо­жет быть однократным или фракционированным, ког­да между дозами облучения имеются интервалы. Кро­ме того, известно хроническое облучение, проходящее длительно и в малых дозах.

Так как альфа- и бета-излучения обладают незна­чительной проникающей способностью, они не мо­гут проходить через одежду и кожный покров к внут­ренним органам человека. Вместе с тем облучение бета-частицами открытых участков тела человека способно вызывать лучевые ожоги {«ядерный за­гар»), последствиями которых могут быть различные заболевания кожи, вплоть до онкологических. Кроме того, частицы, обладающие наибольшей энергией (в первую очередь бета-частицы), могут проникать через кожу непосредственно в кровоток. Однако наибольшую опасность корпускулярные излучения представляют при внутреннем облучении — попада­нии их источников внутрь организма (с пищей, во­дой и пылью). Обладая высокой биологической ак­тивностью (особенно α-частицы), альфа- и бета-излу­чения воздействуют непосредственно на внутренние органы и кровоток. Защита от их воздействия обес­печивается исключением попадания радиоактивных веществ на кожные покровы (защищают любые ви­ды одежды) и внутрь организма (контроль загрязне­ния воды и продуктов, применение СИЗОД).

Вследствие способности фотонных излучений и нейтронного потока проходить через преграды, одежду и тело человека, ионизируя все его структуры, они представляют одинаковую опасность и при внешнем, и при внутреннем облучении,

При фотонном облучении степень поражения орга­низма, кроме поглощенной дозы, в значительной мере зависит от площади облучаемой поверхности. Чем меньше ее размеры, тем меньше биологический эф­фект. Так, например, при облучении участка тела пло­щадью 6 см2 с дозой 4 — 5 Зв заметного биологического эффекта не наблюдается, при такой же дозе на все те­ло— 50 % облученных может погибнуть.

Считается, что радиация не имеет ни вкуса, ни за­паха, однако это справедливо лишь при относительно небольших мощностях дозы. Те, кому приходилось ра­ботать при значительных уровнях радиации, заметили, что в этом случае имеются и органолептические ее воздействия. Исследования показали, что при мощно­сти дозы более 250 мЗв/ч на воздухе (20 мЗв/ч — в по­мещении) и по мере дальнейшего ее нарастания могут ощущаться: специфический запах (озон), учащение пульса и металлический привкус во рту, наступление эйфории, раздражение носоглотки и глаз и, наконец, рябь в глазах и чувство уплотнения воздуха, свиде­тельствующие об очень высоких уровнях радиации (500 - 1000 мЗв/ч и более).

Радиационные поражения человека с высокой сте­пенью вероятности могут возникать при облучениях, превышающих определенный предел. Так, при общем однократном облучении с дозой 1 Зв и более у каждо­го пострадавшего развивается острая лучевая болезнь (ОЛБ). Облучение с дозой 6— 10 Зв ведет к крайне тя­желой форме ОЛБ, когда без лечения возможен ле­тальный исход. Однако при современных методах лечения надежда на выздоровление есть и при облуче­нии более 6 Зв. Доза 10 Зв и более считается абсолют­но смертельной.

Облучение с эффективной дозой свыше 200 мЗв в течение года рассматривается как потенциально опасное. Лица, подвергшиеся такому облучению, должны немедленно выводиться из зоны облучения и направляться на медицинское обследование.

Воздействие ионизирующих излучений на окру­жающую среду.

Радиоактивное загрязнение среды приводит к выводу из хозяйственного оборота значи­тельных площадей на длительные сроки (пять перио­дов полураспада основных загрязнителей) и требует больших материальных затрат на проведение меро­приятий по защите населения, проживающего на дан­ной территории, и принятия мер по локализации и ликвидации загрязнения.

Ситуация приобретает чрезвычайный характер, когда в результате радиационных аварий радиоак­тивные вещества попадают в окружающую среду в большом количестве и загрязнению подвергаются обширные территории. Крупнейшими радиацион­ными авариями в России (в СССР) являлись: взрыв емкостей с жидкими радиоактивными отходами на предприятии «Маяк» в 1957 г., который привел к вы­бросу активностью 2 МКи, загрязнению территории площадью 20 тыс. км2 и отселению 10,5 тыс. человек, а также катастрофа на ЧАЭС с выбросом активно­стью 70 МКи, приведшая к радиоактивному загряз­нению обширных территорий Белоруссии, Украины и России.

Радиоактивное загрязнение не всегда связано с аварийной ситуацией, оно может возникать и в без­аварийной обстановке: при нарушениях норм без­опасности на радиационно (ядерно) опасных объек­тах, при нарушении правил хранения и использования различных техногенных источников излучения, а также строительных норм и правил, касающихся огра­ничения ионизирующих излучений.

Радиационно (ядерно) опасные объекты и характер аварий на них.

К радиационно-опасным объектам (РОО) относятся объекты, на которых хранятся, перерабатываются, ис­пользуются или транспортируются радиоактивные ве­щества, при аварии на которых может произойти облу­чение ионизирующими излучениями людей, сельскохо­зяйственных животных и радиоактивное загрязнение окружающей среды.

В состав РОО по ряду критериев входят и так назы­ваемые ядерно-опасные объекты, представляющие наибольшую опасность при авариях. Ядерно-опасные объекты и их классификация.

Под ядерно-опасными объектами понимаются объек­ты, имеющие значительное количество ядерно-делящихся материалов (ЯДМ) в различных физических со­стояниях и формах, потенциальная опасность функ­ционирования которых заключается в возможности возникновения в аварийных ситуациях самоподдер­живающейся цепной ядерной реакции (СЦЯР). На­пример, возникновение СЦЯР с разной степенью ве­роятности возможно на всех объектах ядерно-топливного цикла (ЯТЦ), кроме горно-обогатительных комбинатов (рис. 1).

К ядерно-опасным объектам относится большинство объектов ядерного топливного цикла, в первую очередь АС, а также ядерные энергетические установки (реакторы) различного назначения; научно-исследовательские реакторы; объекты ядерно-оружейного комплекса и др.