Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект ТЭС 2 сем.doc
Скачиваний:
340
Добавлен:
13.02.2016
Размер:
5.97 Mб
Скачать

16.3 Косвенный метод чм

Состоит в преобразовании ФМ в частотную. Для этого на входе фазового модулятора помещают интегратор. Таким образом, ЧМ сигнал получают в результате фазовой модуляции интегральной функцией модулирующего сигнала.

Рисунок 16.7 – Структурная схема косвенного метода ЧМ.

Покажем, что ФМ можно преобразовать в ЧМ.

При ЧМ частота изменяется по закону:

,

а фаза: .

где - размерный коэффициент пропорциональности.

Достоинство: возможность обеспечения сколь угодно высокой стабильности средней частоты (кварцевая стабилизация), поскольку модуляция осуществляется в промежуточном каскаде, а не в АГ.

Недостаток: невозможность получения широкополосной ЧМ (с большой девиацией частоты); сложность в изготовлении и настройке.

Первый недостаток устраняется путем получения небольших девиаций на низкой частоте с последующим умножением несущей частоты (во столько же раз увеличивается и девиация частоты).

16.4 Косвенный метод фм

Состоит в преобразовании ЧМ в фазовую. Для этого на входе частотного модулятора помещают дифференцирующую цепь. Таким образом, ФМ сигнал получают в результате частотной модуляции дифференциальной функцией модулирующего сигнала.

Рисунок 16.8 – Косвенный метод ФМ.

Покажем, что ЧМ можно преобразовать в ФМ.

При ФМ фаза изменяется по закону:

,

а частота:

,

где - текущий момент времени;

- размерный коэффициент пропорциональности;

- начальная фаза несущей.

17 Преобразование частоты

17.1 Применение преобразования частоты

НЕОБХОДИМОСТЬ ПРЕОБРАЗОВАНИЯ ЧАСТОТЫ возникает при формировании сигналов в радиопередающих устройствах, аппаратуре многоканальной электросвязи, радиоприемных устройствах.

17.2 Принцип преобразования частоты

Преобразование частоты – перенос (смещение) спектра сигнала по шкале частот в область более низких или более высоких частот без изменения закона модуляции. Устройство, его осуществляющее, называется преобразователем частоты.

Новое значение частоты несущего колебания, полученное на выходе преобразователя частоты, называется промежуточной частотой:

,

где - частота гетеродина;

.

Промежуточная частота может быть как выше частоты несущей (преобразование частоты вверх), так и ниже(преобразование частоты вниз).

Процесс преобразования частоты иллюстрируется рисунком 17.2.

Рисунок 17.1 – Временные диаграммы (а, в, д) и спектры (б, г, е) при

преобразовании частоты.

На рисунке приведены графики: АМ сигнала и его спектра, дополнительного гармонического колебания и его спектра, сигнала на выходе ПФ и его спектра. Спектр последнего по форме совпадает с исходным спектром сигнала, но сдвинут в область более низких частот на частоту . Огибающая колебания на выходе ПФ полностью совпадает с огибающей АМ сигнала, а частота заполнения уменьшена на значение.

17.3 Схемное построение преобразователей частоты и их виды

Рисунок 17.2 – Структурная схема преобразователя частоты.

Обозначения:

См – смеситель – нелинейная цепь, создающая спектр комбинационных частот. Реализуется на НЭ: полупроводниковых диодах, транзисторах, лампах и др.

Г – гетеродин – вспомогательный маломощный автогенератор гармонических колебаний высокой частоты.

ПФ – полосовой фильтр – избирательная система, выделяющая одну из комбинационных частот (промежуточную). Если последняя имеет порядок радиочастот, то им является LC контур, звуковых частот – цепь RC.

Виды преобразователей частоты:

- по виду НЭ: диодные, транзисторные, интегральные;

- по числу НЭ: простые (1 НЭ), балансные (2 НЭ), кольцевые (4 НЭ);

- по расположению боковых полос сигнала относительно несущей частоты после преобразования частоты: неинвертирующие (, положение боковых полос не меняется), инвертирующие (, боковые полосы меняются местами);

- по схемному построению: с отдельным смесителем и гетеродином (на различных активных элементах), с объединенным смесителем и гетеродином (на одном активном элементе).