Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsia_9_Zh.doc
Скачиваний:
21
Добавлен:
13.02.2016
Размер:
922.62 Кб
Скачать

12.7. Пьезоэлектрический эффект

В кристаллических диэлектриках поляризация может возник­нуть и при отсутствии электрического поля из-за деформации.Это явление получило название пьезоэлектрического эффекта (пъезоэффекта).

Различают поперечный (рис. 12.24) и продольный (рис. 12.25) пьезоэффекты. Стрелки показывают силы, действующие на крис­талл. При изменении характера деформации, например, при пе­реходе от сжатия к растяжению, изменится и знак возникающих поляризационных зарядов.

Пьезоэлектрический эффект обусловлен деформацией элемен­тарных кристаллических ячеек и сдвигом подрешеток относительно друг друга при механических деформациях. Поляризован-ность при небольших механических деформациях пропорциональна их величине. Пьезоэффект возникает в кварце, сегнетовой соли и некоторых других кристаллах.

Для демонстрации пьезоэффекта можно использовать установ­ку, схема которой изображена на рис. 12.26. К кристаллу К, обладающему пьезоэлектрическими свойствами, приложены металли­ческие пластины М, которые замкнуты через неоновую лампу Н. Эта лампа потребляет небольшой силы ток и загорается при опре­деленном напряжении, т. е. является своеобразным индикатором напряжения.

При ударе по кристаллу (деформации) появляется напряжение на его гранях, а значит, и на металлических пластинах, и неоновая лампа вспыхивает.

Наряду с рассмотренным прямым пьезоэлектрическим эффектом наблюдается и обратный пьезоэффект: при наложении элект­рического поля на кристаллы последние деформируются.

Оба пьезоэффекта — прямой и обратный — применяют в тех случаях, когда необходимо преобразовать механическую величи­ну в электрическую или наоборот.

Так, прямой пьезоэффект используют в медицине — в датчиках для регистрации пульса, в технике — в адаптерах, микрофонах и для измерения вибраций, а обратный пьезоэффект — для создания механических колебаний и волн ультразвуковой частоты.

Существенный пъезоэффект возникает в костной ткани при наличии сдвиговых деформаций.

Причина эффекта — деформация коллагена — основного белка соединительной ткани. Поэтому пьезоэлектрическими свойства­ми обладают также сухожилия и кожа. При нормальной функци­ональной нагрузке, а также при отсутствии дефектов в строении кости в ней существуют только деформации сжатия — растяжения и пьезоэффект отсутствует. Когда что-то ненормально и возникает сдвиговая деформация, то возникает пьезоэффект. Он оказывает влияние на постоянно идущие в кости процессы разрушения и созидания и содействует тому, чтобы исчез сдвиг (меняется архитектура и даже форма кости). Указывают два возможных меха­низма воздействия пьезоэффекта: а) электрическое поле изменяет активность клеток, продуцирующих коллаген, и б) электрическое поле участвует в укладке макромолекул. Исследованием этого вопроса занимался В. Ф. Чепель.

12.8. Энергия электрического поля

Система зарядов или заряженных тел, заряженный конденса­тор обладают энергией.

В этом можно убедиться, разряжая, например, конденсатор че­рез лампочку, присоединенную к нему: лампочка вспыхнет.

Вычислим энергию поля конденсатора. Чтобы зарядить его, будем многократно переносить положительный заряд dq с одной обкладки на другую. По мере его переноса увеличивается напряжение между обкладками конденсатора. Работа, которую необходимо совершить против сил электрического поля для зарядки конденсатора, равна энергии конденсатора:

Элементарная работа по перемещению заряда против сил поля равна dA = Udq. Перенос заряда dq с одной обкладки конденсатора на другую изменяет напряжение его на dU, и тогда из формулы для электроемкости запишем dq = CdU, a значит, dA = CUdU.

Проинтегрировав это равенство в пределах от U0 = 0 до некоторого конечного значения U, найдем выражение для энергии поля заряженного конденсатора:

Если, не изменяя заряда на обкладках конденсатора, отключенного от источника напряжения, раздвинуть его пластины от расстояния l1 до l2, то электроемкость уменьшится (см. 12.34). Как видно из (12.44), при этом энергия конденсатора с увеличением объема, занимаемого электрическим полем (рис. 12.27), возрастет, а напряженность поля останется постоянной. Отсюда ясно, что энергия заряженного конденсатора сосредоточена в объеме, занимаемом электрическим полем.

Более убедительно пояснить существование энергии электрического поля можно на примере переменного электромагнитного поля (передача сигнала на расстояние, давление света и т. п.).

Выразим энергию поля через его характеристики. С этой целью преобразуем (12.43), подставив выражение для емкости плоского конденсатора (12.34) и напряжение из (12.14):

(12.45)

где V = SI — объем, занимаемый электрическим полем конденсатора.

Предполагая, что электрическое поле плоского конденсатора однородно, разделим (12.45) на объем и получим объемную плотность энергии поля:

(12.46)

Единицей объемной плотности является джоуль на кубический метр (Дж/м3).

В заключение заметим, что формула (12.46) справедлива и для неоднородного электрического поля, но тогда она выражает объемную плотность энергии в точке. Энергия неоднородного поля может быть найдена интегрированием (12.46) по соответствующему объему

В общем случае диэлектрическая проницаемость различна в разных точках среды, т. е. зависит от координат, поэтому в этой формулевходит под знак интеграла.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]