Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика (конспект).docx
Скачиваний:
216
Добавлен:
02.03.2016
Размер:
1.1 Mб
Скачать

Использование.

Кольца Ньютона используются для измерения радиусов кривизны поверхностей, для измерения длин волн света ипоказателей преломления. В некоторых случаях (например, при сканировании изображений на плёнках или оптической печати с негатива) кольца Ньютона представляют собой нежелательное явление.

48

Дифракция света – это отклонение световых лучей от прямолинейного распространения при прохождении сквозь узкие щели, малые отверстия или при огибании малых препятствий. Явление дифракции света доказывает, что свет обладает волновыми свойствами. Для наблюдения дифракции  можно: -  пропустить свет от источника через  очень малое отверстие или расположить экран на большом расстоянии от отверстия.  Тогда на экране наблюдается  сложная картина  из светлых и темных концентрических колец. - или  направить свет на тонкую проволоку, тогда на экране будут наблюдаться  светлые и темные полосы, а в случае белого света – радужная полоса.

 - наблюдение дифракции света на малом отверстии. Объяснение картины на экране: Французский физик О. Френель объяснил наличие полос на экране тем, что  световые волны, приходящие  из разных точек в одну точку на экране, интерферируют между собой.

Принцип Гюйгенса – Френеля Все вторичные источники, расположенные на поверхности фронта волны, когерентны между собой. Амплитуда и фаза волны в любой точке пространства – это результат интерференции волн, излучаемых вторичными источниками. Принцип Гюйгенса-Френеля дает объяснение  явлению дифракции: 1. вторичные волны, исходя из точек одного и того же волнового фронта  (волновой фронт – это множество точек, до которых дошло колебание в данный момент времени) , когерентны, т.к. все точки фронта колеблются с одной и той же частотой и в одной и той же фазе; 2. вторичные волны, являясь когерентными, интерферируют. Явление дифракции накладывает ограничения на применение законов геометрической оптики: Закон прямолинейного  распространения света, законы отражения и преломления света выполняются достаточно точно только , если размеры препятствий много больше длины световой волны. Дифракция накладывает предел на разрешающую способность оптических  приборов: - в микроскопе при наблюдении очень мелких предметов изображение получается размытым -  в телескопе при наблюдении звезд вместо изображения точки получаем систему светлых и темных полос.

51

Дифракционная решетка - это  оптический прибор для измерения длины световой волны. Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками. Если на решетку падает монохроматическая волна . то щели (вторичные источники)  создают когерентные волны. За решеткой ставится собирающая линза, далее – экран. В результате интерференции света от различных щелей решетки на экране наблюдается система максимумов и минимумов.

Разность хода между волнами от краев соседних щелей равна длине отрезка АС. Если на этом отрезке укладыается  целое число длин волн, то волны от всех щелей будут усиливать друг друга. При использовании белого света все максимумы  (кроме центрального) имеют радужную окраску.

Итак, условие максимума:

где k – порядок (или номер) дифракционного спектра Чем больше штрихов нанесено на решетке, тем дальше друг от друга находятся дифракционные спектры и тем меньше ширина каждой линии на экране, поэтому максимумы видны в виде раздельных линий, т.е. разрешающая сила решетки увеличивается. Точность измерения длины волны тем больше,  чем больше штрихов приходится на единицу длины решетки.

Дифракционная картина от тонкой проволоки Дифракция в глазе

54

Закон Малюса — физический закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.

где  — интенсивность падающего на поляризатор света,  — интенсивность света, выходящего из поляризатора,  — коэффициент пропускания поляризатора.

Установлен Э. Л. Малюсом в 1810 году.

В релятивистской форме

где и  — циклические частоты линейно поляризованных волн, падающей на поляризатор и вышедшей из него.

Свет с иной (не линейной) поляризацией может быть представлен в виде суммы двух линейно-поляризованных составляющих, к каждой из которых применим закон Малюса. По закону Малюса рассчитываются интенсивности проходящего света во всех поляризационных приборах, например в поляризационных фотометрах испектрофотометрах. Потери на отражение, зависящие от и не учитываемые законом Малюса, определяются дополнительно.

Зако́н Брю́стера — закон оптики, выражающий связь показателей преломления двух диэлектриков с таким углом падения света, при котором свет, отражённый от границы раздела диэлектриков, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения. При этом преломлённый луч частично поляризуется в плоскости падения, и его поляризация достигает наибольшего значения (но не 100%, поскольку от границы отразится лишь часть света, поляризованного перпендикулярно к плоскости падения, а оставшаяся часть войдёт в состав преломлённого луча). Угол падения, при котором отражённый луч полностью поляризован, называется углом Брюстера[1]. При падении под углом Брюстера отражённый и преломлённый лучи взаимно перпендикулярны.

Это явление оптики названо по имени шотландского физика Дэвида Брюстера, открывшего его в 1815 году.

Поляризующий эффект можно понять, если иметь в виду следующее:

  • колебания электрического поля в электромагнитной волне всегда происходят перпендикулярно направлению движения.

  • Взаимодействие с диэлектриком происходит в два этапа. В начале падающая волна генерирует коллективные колебания дипольных моментов молекул диэлектрика, затем эти осцилляции в свою очередь генерируют отражённую и преломлённую волну.

Итак, отражённая волна генерируется колебаниями дипольных моментов молекул среды. Когда угол между отражённой и преломленной волной составляет 90 градусов, колебания электрического поля отражённой волны в плоскости падения могли бы генерироваться только колебаниями дипольных моментов вдоль преломлённого луча. Индуцировать такие колебания могла бы только продольная компонента колебаний электрического поля преломлённого луча. Но поскольку в преломленном пучке её нет, то и в отражённом не может быть.

Закон Брюстера записывается в виде:

где  — показатель преломления второй среды относительно первой, а  — угол падения (угол Брюстера).

При падении света на одну пластинку под углом Брюстера интенсивность отражённого линейно поляризованного света очень мала (для границы воздух-стекло — около 4 % от интенсивности падающего луча). Поэтому для того, чтобы увеличить интенсивность отраженного света (или поляризовать свет, прошедший в стекло, в плоскости, параллельной плоскости падения) применяют несколько скрепленных пластинок, сложенных в стопу — стопу Столетова. Легко проследить по чертежу происходящее. Пусть на верхнюю часть стопы падает луч света. От первой пластины будет отражаться полностью поляризованный луч (около 4 % первоначальной интенсивности), от второй пластины также отразится полностью поляризованный луч (около 3,75 % первоначальной интенсивности) и так далее. При этом луч, выходящий из стопы снизу, будет все больше поляризоваться в плоскости, параллельной плоскости падения, по мере добавления пластин.

62

Абсолютно чёрное тело — физическая идеализация, тело, поглощающее всё падающее на негоэлектромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного тела (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план).

Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (то есть имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце.

Закон излучения Кирхгофа — физический закон, установленный немецким физиком Кирхгофом в 1859 году.

В современной формулировке закон звучит следующим образом:

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела . С другой стороны, каждое нагретое тело излучает энергию по некоторому закону , именуемым излучательной способностью тела.

Величины и могут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:

По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него . Поэтому функция совпадает с излучательной способностью абсолютно чёрного тела, описываемой законом Стефана — Больцмана, вследствие чего излучательная способность любого тела может быть найдена исходя лишь из его поглощательной способности.

Реальные тела имеют поглощательную способность меньше единицы, а значит, и меньшую чем у абсолютно чёрного тела излучательную способность. Тела, поглощательная способность которых не зависит от частоты, называются серыми. Их спектр имеет такой же вид, как и у абсолютно чёрного тела. В общем же случае поглощательная способность тел зависит от частоты и температуры, и их спектр может существенно отличаться от спектра абсолютно чёрного тела. Изучение излучательной способности разных поверхностей впервые было проведено шотландским ученым Лесли при помощи его же изобретения — куба Лесли.

63