Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Tri_vzglyada_na_akustiku_pomescheniy (1)

.pdf
Скачиваний:
12
Добавлен:
14.03.2016
Размер:
315.82 Кб
Скачать

3)Пусть комната имеет размеры 6, 4 и 3 м. Ее объем 72 м3, площадь преград 69 м2. Тогда Lср = 4 х 72/60 = 4,8 м. При времени реверберации комнаты 0,5 с и полезной части этого времени 0,2 с длина пути звуковой энергии составит 340 х 0,2 = 68 м, а количество отражений 68/4,8 = 14. Ясно, что при таких количествах отражений серьезная статистическая оценка процесса реверберации невозможна.

Из этих примеров видно, насколько формулы, по которым определяют время реверберации, основываются в некоторых случаях на спорных положениях.

В статистической теории не рассматриваются соотношение между энергией прямого и диффузного звука, энергия начальных, сравнительно редких отражений, направленные потоки энергии, фокусировка звука. Сфера ее рассмотрения достаточно плотный временной ряд отражений, создающий слитную последовательность запаздывающих звуков. Ее выводы тем точнее, чем дальше находится точка наблюдения от точки расположения источника звука.

Статистическая теория имеет ряд уязвимых мест. Некоторые ее положения не находят подтверждения в повседневной практике, расходятся с ней. Она не объясняет акустических процессов на очень низких и очень высоких звуковых частотах, в небольших и очень больших помещениях, в помещениях с резким преобладанием какого- то линейного размера, с неравномерным распределением звукопоглощающих материалов.

Несмотря на это, она является мощным и действенным инструментом исследования и проектирования помещений, поскольку дает числовые значения параметров, характеризующих акустику помещений. Важно знать ее сильные и слабые стороны, с пониманием и осторожностью применять расчетные формулы и на этой основе сознательно пользоваться ее достижениями.

Волновая теория

Основные положения

В статистической теории отзвук рассматривается как затухание последовательного ряда отраженных звуковых импульсов, излученных источником звука. Подразумевается, что форма импульсов, следовательно, и их спектр, заданные источником звука, при отражениях остаются неизменными. Такое представление вызвало сомнения принципиального характера: ведь замкнутый воздушный объем помещения, если его размеры соизмеримы с длиной волны или больше ее, следует рассматривать как колебательную систему с распределенными параметрами, которая обладает спектром собственных (резонансных) частот. После прекращения действия источника звука, поддерживающего вынужденные колебания воздуха в помещении, в системе совершаются только собственные колебания, они затухают по мере поглощения энергии. В явлении реверберации нет места остаточному колебательному процессу, навязанному ранее действием вынуждающей внешней силы; отзвук есть собственное затухающее колебание воздушного объема с частотами, зависящими от размеров и формы помещения. Следовательно, сутью реверберации являются не многократные отражения, а постепенно затухающие собственные колебания объемного резонатора, не зависящие от внешних влияний. Такой взгляд положен в основу волновой теории акустических процессов в помещении.

Акустику помещений с позиции волновых, колебательных процессов анализировали Дж. В. Стретт, Бейль, Курант, Шустер и Ветцман, Кнудсен, Морз и Болт и другие. Среди разработчиков волновой теории в нашей стране следует в первую очередь назвать И. Г. Дрейзена и В. В. Фурдуева.

11

Большинство инженеров полагают, что волновая теория основана на анализе действия объемных электромагнитных резонаторов. Действительно, в обеих теориях есть много общего, включая расчетные соотношения. Но волновую теорию реверберации начали разрабатывать еще в середине прошлого века, значительно раньше статистической. Просто в ее разработке продвинулись меньше, чем в статистической.

Идеи, положенные в основу волновой теории, были впервые высказаны Дж. В. Стреттом (лордом Релеем). В "Основах акустики", изданных впервые в 1877 г., приводится необходимый математический аппарат, причем со ссылкой на решение волнового уравнения для трехмерного пространства, данного Дюамелем (Duhamel) в математическом журнале "Liouville Journal Math.", том XIY, 1849. Дюамель вывел выражение для собственной частоты помещения:

f =

где с скорость звука; l, b, h — линейные размеры; k, m, n — любые целые числа. В зависимости от значений коэффициентов k, m, n принята следующая классификация типов образующихся стоячих волн (стоячая волна частный случай интерференции, заключающийся в распространении двух волн одинаковой амплитуды и длины в противоположном направлении):

1)осевые, когда два из трех коэффициентов равны нулю,

2)касательные, когда один из коэффициентов равен нулю,

3)косые или тангенциальные, когда ни один из коэффициентов не равен нулю.

Осевые волны отражаются только от одной пары противоположных параллельных преград (стен), касательные от двух пар (т. е. устанавливаются в плоскости, параллельной третьей паре преград), косые от всех пар преград.

Для многих материалов коэффициенты поглощения зависят от угла падения волны на преграду. В связи с этим волны разных типов затухают с разной скоростью. Затухание получается наибольшим для косых волн и наименьшим для осевых. Поэтому, когда источник звука возбуждает колебания разных типов, то различные собственные колебания, даже с близкими частотами, будут затухать с неодинаковой скоростью. В результате кривая спада интенсивности звука не будет иметь регулярного вида, который предписывается статистической теорией. Крутизна спада уровня на разных стадиях отзвука будет различной, и тогда теряется определенный смысл самого понятия времени реверберации. Процесс спада будет складываться из разных частных процессов и значит, не будет изображаться экспоненциальной кривой, а будет следовать ей лишь в среднем. На него будут накладываться небольшие флуктуации (отклонения). Практика показывает, что наличие малых флуктуаций благоприятно сказывается на оценке качества звучания. Поэтому значение статистической теории не только не снижается, а, наоборот, приобретает новую опору в выводах волновой теории.

Итак, в статистической теории ход спада интенсивности рассчитывается методами теории вероятности, "в среднем", а флуктуации фактического спада относительно усредненной формы определяются методами волновой теории.

12

Из волновой теории вытекает, что помещения простой правильной геометрической формы менее удовлетворяют условию диффузности поля, чем помещения сложной геометрической формы с непараллельными стенами, косо поставленными плоскостями или выпуклыми поверхностями, углублениями в виде кессонов. Разумеется, линейные размеры этих поверхностей должны быть соизмеримы с длиной волны или быть больше ее.

Спектр собственных частот

Приведем в качестве примеров результаты расчета длин волн и частот, соответствующих резонансным колебаниям в помещении в виде прямоугольного параллелепипеда с линейными размерами 10, 6, 4 м.

Наибольшая длина волны будет в два раза больше максимального размера помещения, т. е. имеем 10 х 2 = 20 м. Результаты сведены в таблице, причем значения частот округлены до целых чисел (первый столбец таблицы номер колебания; f, Гц частота; λ, м длина волны; λ = с (скорость звука, 340 м/с) / f).

 

k

m

n

 

f, Гц

 

λ, м

 

 

 

 

 

 

 

 

 

 

 

1

1

0

0

 

20,0

 

17

2

0

1

0

 

12,0

 

28

3

1

1

0

 

10,3

 

33

4

2

0

0

 

10,0

 

34

5

0

0

1

 

8,0

 

42

6

2

1

0

 

7,7

 

44

7

1

0

1

 

7,4

 

46

8

0

1

1

 

6,7

 

51

9

1

1

1

 

6,3

 

54

10

2

0

1

 

6,2

 

55

11

0

2

0

 

6,0

 

57

12

1

2

0

 

5,75

 

59

13

0

0

2

 

4,0

 

85

14

1

0

2

 

2,9

 

117

 

 

 

 

 

 

 

 

Из результатов расчета видно, что на нижних частотах резонансы следуют через значительные промежутки и должны привести к заметному изменению спектра отзвука по сравнению со спектром исходного звучания, следовательно, к изменению тембра отзвука. Между тем, повседневный опыт убеждает нас в обратном. Как объяснить это противоречие? Объяснение сводится к следующему. В той области частот, где резонансные частоты расположены редко, соответствующие частотные составляющие в спектре речевых и музыкальных сигналов почти не встречаются. Реальное значение могли бы иметь, например, 13 и 14 частоты, но интенсивность резонансных колебаний столь

13

больших номеров невелика, поэтому заметного изменения тембра отзвука не произойдет. С увеличением частоты плотность резонансных частот быстро возрастает. Так, в области 500 Гц на 1 Гц полосы частот придется примерно 10 резонансных частот. В связи с этим в помещениях большого объема, какими являются концертные и театральные залы, ухудшения звучания не происходит.

Иное положение складывается в помещениях небольшого объема, например в речевых (дикторских) студиях и жилых комнатах. Известны жалобы дикторов, что их голос в речевых студиях звучит совершенно необычно, неприятно, ощущается "бубнение". Объясняется это тем, что в помещениях небольшого объема основная резонансная частота попадает в область хорошо слышимых звуков. Для борьбы с этим неприятным явлением приходится либо значительно уменьшать время реверберации путем использования в студии эффективно поглощающих материалов, либо ограничивать полосу пропускания электрического тракта ниже 250—300 Гц. "Бубнение" свойственно и многим жилым комнатам. Устранить этот недостаток почти невозможно, так как нет дешевых материалов, эффективно поглощающих звуковую энергию в области 100 Гц и ниже.

Особенно выражены резонансы в помещениях с совпадающими линейными размерами. В этом случае совпадают резонансные частоты, обусловленные стоячими волнами в разных плоскостях. Наихудшим в акустическом отношении является помещение кубической формы, наилучшим помещение, пропорции которого приближаются к "золотому сечению". Заключение, сделанное акустиками древности, нашло подтверждение в выводах волновой теории.

Дж. В. Стретт в "Теории звука" отметил наблюдавшееся им вырождение спектра собственных частот в помещении с преобладанием одного из линейных размеров и, следовательно, с преобладанием одного из видов собственных колебаний: "В моем доме есть подземный коридор, в котором можно, пропев надлежащую ноту, возбудить свободные колебания, продолжающиеся много секунд, и часто случается, что звучащая нота сопровождается отчетливыми биениями." Эти биения порождаются одновременным возбуждением двух близких собственных частот.

Каждый человек обнаружит резонансные частоты помещения, пропев несколько звуков разной частоты. Помещение отзовется на некоторые из них усилением колебаний.

Убедиться, что помещение небольшого объема с совпадающими линейными размерами обладает обедненным спектром собственных частот, можно, проделав простой опыт. В слабо заглушенном помещении (например, ванной комнате), стены которого покрыты кафельными плитками, ударьте в ладоши. Вместо ожидаемого шумового отклика вы услышите звенящий звук с заметно выраженной высотой тона. Это объясняется бедностью спектра собственных частот такого помещения.

Стретт заметил, что люди с особо развитым слухом, например, слепые, обладают способностью решить обратную задачу: анализируя каким-то неведомым способом спектр отзвука, они определяют линейные размеры помещения и их пропорции.

Коэффициент поглощения с позиций волновой теории

Волновая теория дала ответ на вопрос, имеющий практическое значение при сооружении различных залов и аудиторий: почему звукопоглощающие материалы, коэффициенты поглощения которых определены в звукомерной камере, ведут себя в помещении иным образом, как будто их коэффициенты поглощения отличаются от измеренных и указанных в справочниках.

14

В звукомерной камере материал, как правило, исследуют в диффузном поле. Коэффициент поглощения определяется усреднением по всем углам падения звуковых волн, интегрально. Но коэффициент поглощения многих материалов зависит от угла падения волны. Поэтому поглощение материала в зале даже на близких частотах будет зависеть от типа волны осевого, касательного, косого. А от образующегося типа волны зависят углы, под которыми волны падают на преграду. Для большинства пористых материалов коэффициент поглощения растет с увеличением угла. Однако это наблюдается до известного предела, когда падающая волна скользит вдоль поглощающего материала. Поэтому в помещении материал ведет себя иначе, чем в звукомерной камере.

Кроме того, из-за нестационарности звукового поля коэффициент поглощения в помещении зависит не только от свойств материала преграды, но и от общего поглощения помещения A = αсрS. Поэтому коэффициент поглощения одного и того же материала в разных помещениях может отличаться в 1,5—2 раза. Правда, учитывая, что оптимум времени реверберации понятие несколько неопределенное и что расчеты времени реверберации в силу высказанных ранее причин носят приближенный характер, с такими тонкостями поведения звукопоглощающих материалов чаще всего не считаются.

Противоположность и единство теорий

При всей разнице в подходах к объяснению акустических процессов в помещениях статистическая и волновая теории дополняют друг друга и потому в известной мере работают на практику совместно.

В заключение настоящего раздела заметим следующее. Многие люди, попав в помещение с большой реверберацией, произносят: "Какой здесь резонанс!" Известный акустик В. Кнудсен высказался по этому поводу: "Те, кто смешивают процесс реверберации с резонансом, видимо, не так уж далеки от истины." Кнудсен этим высказыванием подчеркнул физическое единство акустических процессов, описываемых с разных точек зрения статистической и волновой теориями.

Принципиальное различие подходов к объяснению акустических процессов заключается в том, что в одном случае процесс отзвука рассматривается с помощью теории вероятностей усредненно, а в другом с волновых позиций определяются отклонения фактического хода процесса от "среднего".

Из оптики известно, что при уменьшении длины волны волновые законы приближаются к законам геометрической оптики. Точно так же в помещениях, размеры которых весьма велики по сравнению с длиной волны, можно пользоваться законами геометрической оптики, строить пути звуковых лучей, находить точки фокусов, определять запаздывание начальных отражений, т. е. использовать весь арсенал геометрической теории.

Геометрическая (лучевая) теория

Основные положения

Геометрическая (лучевая) теория акустических процессов в помещениях основана на законах геометрической оптики. Движение звуковых волн рассматривают подобно движению световых лучей. В соответствии с законами геометрической оптики при отражении от зеркальных поверхностей угол отражения β равен углу падения α, и падающий и отраженный лучи лежат в одной плоскости. Это справедливо, если размеры отражающих поверхностей много больше длины волны, а размеры неровностей поверхностей много меньше длины волны.

15

Характер отражения зависит от формы отражающей поверхности. При отражении от плоской поверхности возникает мнимый источник, место которого ощущается на слух подобно тому, как глаз видит мнимый источник света в зеркале. Отражение от вогнутой поверхности приводит к фокусировке лучей. Выпуклые поверхности (колонны, пилястры, крупные лепные украшения, люстры) рассеивают звук.

Роль начальных отражений

Немаловажным для слухового восприятия является запаздывание отраженных звуковых волн. Звук, излученный источником, доходит до преграды (например, стены) и отражается от нее. Процесс многократно повторяется с потерей при каждом отражении части энергии. На места слушателей (или в точку расположения микрофона) первые запаздывающее импульсы, как правило, приходят после отражения от потолка и стен зала (студии).

Вследствие инерционности слуха человек обладает способностью сохранять (интегрировать) слуховые ощущения, объединять их в общее впечатление, если они длятся не более 50 мс (точнее 48 мс). Поэтому к полезному звуку, подкрепляющему исходный, относятся все волны, которые достигают уха в течение 50 мс после исходного звука. Запаздыванию на 50 мс соответствует разница в пути 17 м. Концентрированные звуки, приходящие позднее, воспринимаются как эхо (по другим источникам, порогом различения эха принято считать 80 мс; впрочем, это в большой степени зависит от длительности звукового импульса). Отражения от преград, укладывающиеся в указанный промежуток времени, являются полезными, желательными, так как они увеличивают ощущение громкости на значения, доходящие до 5—6 дБ, улучшают качество звучания, придавая звуку "живость", "пластичность", "объемность". Таковы эстетические оценки музыкантов.

Исследования начальных отражений методом акустического моделирования были проведены в Научно-исследовательском кинофотоинституте (НИКФИ) под руководством А. И. Качеровича. Изучалось влияние на качество звучания речи и музыки формы, объема, линейных размеров, размещения звукопоглощающих материалов. Получены интересные результаты.

Существенную роль играет направление прихода начальных отражений. Если запаздывающие сигналы, т. е. все ранние отражения, поступают к слушателю с того же направления, что и прямой сигнал, слух почти не различает разницы в качестве звучания по сравнению со звучанием только прямого звука. Возникает впечатление "плоского" звука, лишенного объемности. Между тем даже приход только трех запаздывающих сигналов по разным направлениям, несмотря на отсутствие реверберационного процесса, создает эффект пространственного звучания. Качество звучания зависит от того, с каких направлений и в какой последовательности приходят запаздывающие звуки.

Весьма существенно время запаздывания начальных отражений по отношению к моменту прихода прямого звука и относительно друг друга. Длительности запаздывания должны быть различными для наилучшего звучания речи и музыки. Хорошая разборчивость речи достигается, если первый запаздывающий сигнал поступает не позже 10—15 мс после прямого, а все три должны занимать интервал времени 25—35 мс. При звучании музыки наилучшее ощущение пространственности и "прозрачности" достигается, если первое отражение приходит к слушателю не ранее 20 мс и не позже 30 мс после прямого сигнала. Все три запаздывающих сигнала должны располагаться в промежутке времени 45—70 мс. Наилучший пространственный эффект достигается, если уровни запаздывающих начальных сигналов незначительно отличаются друг от друга и от уровня прямого сигнала.

16

При подключении к структуре начальных отражений (первого, второго, третьего) остальной части отзвука наиболее благоприятное звучание получается в том случае, когда вторая часть процесса начинается после всех дискретных (отдельных) отражений, называемых еще ранними. Подключение же процесса реверберации (отзвука) сразу же за прямым сигналом ухудшает качество звучания.

При обеспечении оптимальной структуры ранних отражений звучание музыки остается хорошим даже при значительном (на 10—15%) отклонении времени реверберации от рекомендуемого. Достижение оптимального запаздывания отраженных сигналов по отношению к прямому звуку выдвигает требование к минимальному объему помещения, которое не рекомендуется нарушать. Между тем при проектировании помещения выбирают его размеры, исходя из заданной вместимости, т. е. решают задачу чисто экономически, что неправильно. Даже в небольшом концертном зале оптимальную структуру ранних отражений можно получить лишь при заданных высоте и ширине зала перед эстрадой, меньше которых спускаться нельзя. Известно, например, что звучание симфонического оркестра в зале с низким потолком существенно хуже, чем в зале с высоким потолком.

Полученные результаты дали возможность выработать рекомендации в отношении времени запаздывания и размеров зала. Учитывалось, что первый запаздывающий сигнал, как правило, приходит от потолка, второй от боковых стен, третий от задней стены зала. Разные требования по времени задержки начальных отражений объясняются особенностями речи и музыкальных звуков и различием решаемых акустических задач.

Чтобы добиться хорошей разборчивости речи, запаздывания должны быть сравнительно небольшими. При звучании музыки нужно подчеркнуть мелодическое начало, для обеспечения слитности звуков необходимо большее время запаздывания начальных отражений. Отсюда вытекают рекомендуемые размеры концертных залов: высота и ширина не менее 9 и 18,5 м соответственно и не более (у портала) 9 и 25 м.

Увеличивать высоту и ширину зала в некоторой мере можно лишь на расстоянии от портала сцены (эстрады), превышающем примерно 1/4—1/3 общей длины зала: высоту до 10,5 м, ширину до 30 м. Длину зала выбирают, учитывая необходимость получать на самых удаленных слушательских местах достаточную энергию прямого звука. Исходя из этого обстоятельства, рекомендуют выбирать длину зала по партеру не более 40 м, а по балкону — 46 м.

Таким образом, минимальные размеры помещения для воспроизведения музыки (высота и ширина) не связаны с его вместимостью, а определяются необходимой структурой начальных отражений. Даже если помещение предназначено для исполнения музыки в отсутствии слушателей (студия звукозаписи, звукового вещания, ателье записи музыки, зал прослушивания киностудии), его размеры должны определяться только качеством звучания музыки. "Экономить" на этих размерах значительно ухудшать качество звучания.

Исторические примеры

По сохранившимся до наших времен культовым и зрелищным сооружениям видно, что основные положения лучевой теории были известны древним строителям и что эти положения неукоснительно соблюдались. Размеры греческих и римских театров на открытом воздухе были выбраны такими, чтобы в наибольшей степени использовать энергию отраженных волн.

17

Театры содержали три основные части:

1) сцену (sсena) глубиной 3,5—4 м в Греции и 6—8 м в Риме, на которой разыгрывалось театральное действие;

2)площадку перед сценой орхестру (orhestra буквально "место плясок"), на которой располагался хор и выступали танцоры;

3)поднимающиеся ступенями зрительские места вокруг орхестры, образующие так называемый амфитеатр (от греческих слов amphi — " с обеих сторон", "кругом" и theatron — " место зрелищ").

Звуки от исполнителей достигали зрителей, располагавшихся на амфитеатре, прямым путем, а также после отражений от поверхности орхестры и стены, находящихся позади сцены. Плоскость орхестры покрывали хорошо отражающим материалом. Глубину сцены в греческих театрах делали небольшой, чтобы лучи, отраженные от задней стены, не слишком запаздывали по отношению к прямому лучу и не ухудшали разборчивость речи актеров. Часть звуковой энергии, отразившись от стен, уходила вверх. В современных крытых театральных залах эта энергия отражается потолком вниз и увеличивает интенсивность звука на зрительских местах.

Особую роль в усилении и обогащении звучания играли так называемые "гармоники" — системы резонаторов в виде бронзовых цилиндрических сосудов и глиняных кувшинов амфор. Они располагались в нишах стены позади зрительских мест и под скамьями. Греки считали, что для благозвучия речи и музыки резонаторы должны быть подобраны или настроены по тонам музыкальных гамм: энгармонической, хроматической и диатонической. Первая система, по мнению их создателей, придавала звукам торжественность и строгость; вторая, благодаря "толпящимся" нотам, — утонченность, нежность звучанию; третья из-за консонансности (согласного звучания) интервалов естественность музыкальному исполнению.

Очевидно, что античные архитекторы при строительстве театров искали и находили технические пути передачи зрителям и слушателям не только смысловой (семантической), но и художественной (эстетической) информации, стремились обогатить музыкальное звучание.

Рациональной формой и разумно выбранными размерами отличались театральные и концертные залы 18 и 19 веков. Ряд хороших в акустическом отношении театральных и концертных залов был построен в разных странах в 20 веке.

Неудачные решения

Казалось бы, опыт, накопленный за тысячелетия, должен использоваться современными архитекторами и строителями. Между тем множатся примеры неудовлетворительных акустических решений, например, строительство залов круглой или эллиптической в плане формы (кинотеатр "Колизей" в Санкт-Петербурге, концертный зал им. Чайковского в Москве и др.). В них образуются зоны фокусировки отраженных лучей и зоны, в которые отраженные лучи либо не попадают, либо попадают с большой временной задержкой. В зале, имеющем в плане форму круга, касательный к стене луч и при последующих отражениях остается в близкой к стене зоне. Лучи, распространяющиеся примерно в диаметральном направлении, образуют после отражения мнимое изображение источника, в котором интенсивность звука, как и в кольцевой зоне возле стены, повышена.

18

Неудовлетворительными являются залы с плоским потолком и низким порталом сцены.

Другой крайностью является чрезмерная высота потолка зала. Так, неудовлетворительным в акустическом отношении являлся знаменитый зал Альберт-холл в Лондоне шириной 56 м при высоте 39 м. Ввиду необычайно большой высоты зала разница в пути между прямым звуком и звуками, отраженными от потолка, достигала 60 м, что давало запаздывание почти на 200 мс. Центр кривизны вогнутого потолка находился в зоне, занятой слушателями, что порождало сильное эхо.

Так же примером неудачного акустического решения может служить Большой зал Центрального театра Российской армии (ЦТРА). Основные недостатки зала: большая ширина, равная в середине зала 42 м, и чрезмерно высокий потолок у портала 18 м над планшетом сцены. Отражения от боковых стен не приходят в центральную часть зала, а первые отражения от потолка поступают в середину партера с запаздыванием более 35 мс. В результате разборчивость речи в партере низкая, несмотря на близость актеров к публике. Форма задней стены зала и парапета балкона является частью окружности, центр которой расположен на авансцене. Звуки, отраженные от задней стены и парапета балкона, возвращаются в эту же точку и прослушиваются как сильное эхо, ибо запаздывание превышает 50 мс.

Когда-то хорошей акустикой отличался актовый зал МТУСИ, где даже проводились симфонические концерты, транслировавшиеся по радио. Акустические условия значительно ухудшились после косметического ремонта зала. Была изменена конструкция ограждения балкона, в глубине которого был поставлен отражающий щит. Сильные отражения от парапета и щита ухудшили звучание в партере. Из-за больших запаздываний снизилась разборчивость речи.

Примером неудачного акустического решения является и Центральный концертный зал гостиницы "Россия" в Москве. Квадратная в плане форма зала привела к обеднению спектра собственных частот, низкий потолок создает малую задержку первых отражений, а большая ширина зала приводит к тому, что отражения от стен не попадают в первую половину партера. Трижды пытались улучшить звучание заменой звукопоглощающих материалов и их размещением в зале. Однако скомпенсировать заведомо неудачную исходную форму зала не удалось.

Даже в помещениях с правильно выбранными формой и линейными размерами, пропорции которых приближаются к "золотому сечению", обнаруживаются недостатки звучания, устранение которых занимает много времени, сил и средств. В тщательной подготовке к нормальной эксплуатации нуждаются студии звукового и телевизионного вещания. Примером может служить комплекс работ по подготовке студии N5 Государственного дома радиовещания и звукозаписи (ГДРЗ). Студия предназначена для исполнения произведений крупных форм с участием симфонического оркестра и хора в присутствии слушателей. Ее линейные размеры (29,8 х 20,5 х 14 м) почти соответствуют "золотому сечению", расчетное время реверберации на средних частотах 2,3 с. Ввиду большой высоты и ширины время прихода начальных отражений не оптимально. Для уменьшений длины путей отраженных лучей над местом расположения оркестра и на боковых стенах были укреплены отражающие панели. Потребовалось несколько раз изменять положение панелей и уменьшать площадь звукопоглощающих конструкций, прежде чем музыканты и звукорежиссеры признали качество звучания хорошим. Из этого примера видно, насколько тонкой и скрупулезной является акустическая настройка помещений.

19

Встречаются залы, рассчитанные на небольшое количество слушателей, соответственно небольшой площади и невысокие. Авторы их, по-видимому, полагали, что при небольших размерах зала "все будет хорошо слышно". В действительности в таких залах на слушательских местах образуется плотная структура начальных отражений. Из-за этого при небольшом времени реверберации звучание оказывается "плоским", подобно звучанию на открытом воздухе, а при большом времени реверберации теряется "прозрачность" звучания, начинается маскировка последующих музыкальных звуков предыдущими.

Также неудовлетворительны большей частью так называемые актовые залы. Они предназначаются для собраний, т. е. для звучания речи. Низкий потолок, гладкие параллельные стены, лишенные акустической отделки порождают неоптимальные начальные отражения. Попытки проводить в них концерты не приносят успеха. Музыка звучит в них плохо. Хуже всего, что концерты в таких залах портят публику. Ниже всякой критики акустика так называемых "концертно-спортивных" залов.

В нашей стране большой вред качеству театральных и концертных залов принесла "борьба с архитектурными излишествами". "Излишествами" были объявлены все звукорассеивающие и звукопоглощающие конструкции и даже мягкая обивка кресел, призванная служить эквивалентом отсутствующих зрителей. В результате на слушательских местах плохая структура начальных отражений, невысокая диффузность, а при частичном заполнении чрезмерная "гулкость".

Лучшие залы

Непревзойденными по качеству звучания остаются Колонный зал Дома союзов, Большой и Малый залы Московской консерватории, Большой зал Санкт-Петербургской филармонии и некоторые другие залы старой постройки.

К достижениям отечественной архитектурной акустики следует отнести зрительные залы Детского музыкального театра, Театра им. Е. Вахтангова, Московского драматического театра им. А. С. Пушкина, Дворца культуры ЗиЛ, студии Государственного дома звукозаписи, ателье записи звука и зал прослушивания "Мосфильма". При их проектировании и строительстве были учтены положения и рекомендации отечественных и зарубежных акустиков.

В этих залах соблюдены требования геометрической акустики: рационально выбраны форма и размеры, что обеспечило высокую степень диффузности поля и оптимизацию времен запаздывания начальных отражений. В каждом конкретном случае выбраны свои архитектурно-планировочные решения. Залам сравнительно небольшой ширины придана форма прямоугольного параллелепипеда. Таковы Большой и Малый залы Московской консерватории, Большой зал московского Дома ученых. При небольшой ширине количество отражений, приходящих на места слушателей, быстро нарастает со временем и в завершающей части процесса реверберации настолько велико, что обеспечивает хорошую диффузность поля. В залах большой ширины (Колонный зал Дома союзов, Большой зал Санкт-Петербургской филармонии) введены звукорассеивающие конструкции в виде ряда колонн. В современных залах большой вместимости хорошего рассеяния звуков достигают членением стен и потолка и установкой крупных рассеивающих поверхностей на стенах.

Важное значение имеет материал, которым отделаны стены и потолок. Наилучшим является дерево. Звучание музыки в залах, отделанных деревом, отличается красивой тембральной окраской. Наоборот, совершенно противопоказаны железобетонные

20

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]