Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Razdel_2_Konspekta_lektsiy_po_EiEKUiS

.pdf
Скачиваний:
12
Добавлен:
16.03.2016
Размер:
1.75 Mб
Скачать

Раздел 2. Конденсаторы, резисторы, катушки индуктивности, трансформаторы и LC-фильтры

Тема 2.1 Резисторы

Классификация и конструкции. Принцип действия резисторов основан на использовании свойств материалов оказывать сопротивление проходящему электрическому току.

По назначению резисторы могут быть общего назначения, прецизионные, высокочастотные, высокомегаомные, высоковольтные и специальные, а по эксплуатационным характеристикам – термо- и влагостойкими, вибро- и ударопрочными, высоконадежными, повышенной ―высотности‖.

По виду токопроводящего элемента навесные резисторы подразделяют на группы, которым, согласно ГОСТ 13453 – 68, присваиваются обозначения. Первый буквенный индекс указывает тип резисторов (С – постоянные, СП – переменные), а второй цифровой – материал, из которого они изготовлены (1

– непроволочные, поверхностные, углеродистые и бороуглеродистые; 2 – непроволочные, поверхностные, металлопленочные, металлоокисные; 3 – непроволочные, поверхностные, композиционные; 4 – непроволочные, объемные, композиционные; 5 – проволочные; 6 – резисторы СВЧ).

Рис. 66. Постоянный непроволочный резистор цилиндрической формы:

1 колпачок с выводом, 2 – токопроводящий слой, 3 – керамический стержень, 4 гидрофобная эмаль

Третий цифровой индекс означает конструктивный вариант исполнения резисторов одной группы (например, С5-5 – постоянный проволочный резистор пятого варианта исполнения). Наряду с таким обозначением некоторые резисторы ранних выпусков имеют обозначения, в основу которых были положены некоторые отличительные признаки (например, МЛТ – металлопленочный, лакированный, теплостойкий).

По характеру изменения сопротивления резисторы подразделяют на постоянные и переменные, в том числе подстроечные. Постоянные резисторы не изменяют сопротивление при сборке, настройке и эксплуатации аппаратуры, а переменные и подстроечные имеют для этой цели специальное устройство (контактный ползун, укрепляемый на поворотной или червячной оси).

При изготовлении резисторов гибридных ИС из-за малых размеров полосок часто не удается получить требуемое расчетное сопротивление. Поэтому механическими способами или лазерным лучом, уменьшая ширину полоски, подгоняют сопротивление резисторов под заданный номинал.

Рассмотрим типичные конструкции постоянных и переменных резисторов различных групп.

П о с т о я н н ы й н е п р о в о л о ч н ы й п о в е р х н о с т н ы й р е з и с т о р ц и л и н д р и ч е с к о й ф о р м ы, характерный для групп С1, С2 и СЗ (рис. 66), представляет собой круглый керамический стержень 3, на внешнюю поверхность которого нанесен тонкий (от долей до единиц микрометра) токопроводящий слой 2. На оба конца стержня насажены латунные колпачки 1 с аксиальными (чаще всего) выводами. Для защиты от внешней среды резистор покрывают гидрофобной (водоотталкивающей) эмалью 4, а выводы облуживают. Цвет эмали обычно обозначает ту или иную группу резисторов (например, красный – группу С2). Токопроводящий слой низкоомных резисторов (не более 200 – З00 Ом) сплошной, а резисторов с более высокими сопротивлениями – с нарезкой; причем чем выше сопротивление, тем мельче шаг нарезки.

П о с т о я н н ы й н е п р о в о л о ч н ы й о б ъ е м н ы й р е з и с т о р п р я м о у- г о л ь н о й ф о р м ы, характерный для группы С4 (рис. 67), представляет

собой стержень из токопроводящей композиции 4 с проволочными аксиальными выводами 1, которые опрессованы стеклоэмалевой (стеклокерамической) оболочкой 2. Такая конструкция весьма устойчива к механическим воздействиям и влиянию влаги.

Рис. 67. Постоянный непроволочный резистор прямоугольной формы:

1 проволочный вывод, 2 – етеклоэмалевая оболочка, 3 – эмалевое покрытие, 4 токопроводящая композиция

П о с т о я н н ы й п р о в о л о ч н ы й р е з.и с т о р, характерный для группы С5, представляет собой изоляционный каркас, на который намотана проволока (или микропроволока в стеклянной изоляции),. имеющая высокое удельное сопротивление. Каркас выполняют из керамики или нагревостойкой пластмассы, а обмотка из манганина, константана или нихрома может быть однослойной, многослойной, простой и специальной,

секционированной и несекционированной. Снаружи резистор покрывают термостойкой эмалью, опрессовывают пластмассой либо герметизируют металлическим корпусом, закрываемым с торцов керамическими шайбами. Резистор может быть цилиндрической или прямоугольной формы.

П о с т о я н н ы й н и т о ч н ы й р е з и с т о р, характерный для групп микромодульных резисторов С2-12 и СЗ-З, представляет собой стержень из стекловолокна с нанесенными на его поверхность тонкими слоями сплавов олова или токопроводящей композиции и применяется при конструировании ГИС. Ниточные резисторы приклеивают к контактным площадкам подложек токопроводящим клеем-контактолом.

П о с т о я н н ы й т о н к о п л е н о ч н ы й р е з и с т о р ГИС представляет собой напыленный через специальную маску на ситалловую или поликоровую подложку тонкий (не более 1 мкм) слой проводникового материала в виде прямоугольной полоски или ―меандра‖ (рис. 68). Для защиты от окисления на эти резисторы часто напыляют слой моноокиси кремния или покрывают их гидрофобным лаком.

П о с т о я н н ы й т о л с т о п л е н о ч н ы й р е з и с т о р ГИС изготовляют нанесением через трафарет (маску) специальных паст на основе благородных металлов. Пасту втирают специальным инструментом (ракелем) в керамическую подложку (керамика 22"С), а затем вжигают, получая резисторы прямоугольной формы с шириной полоски на порядок большей, чем у тонкопленочных.

Рис.68. Подложка с тонкоплѐночными

Рис.69.

Переменный

непроволочный

резисторами, проводниками и контактными

резистор

круглой

формы:

1

подвижный

площадками: 1,2 – низкоомный и

контакт.

, 2 – пластмассовый корпус,; 3 –

высокоомный

резисторы

прямоугольной

токопроводящий

элемент,

4

– вывод, 5 –

формы, 3 – высокоомный

резистор типа

ограничитель угла поворота, 6 – заклѐпка, 7

«меандр», 4 – ситаловая подложка толциной

– расчеканенный торец оси, 8 – подвижная

0,5-0,6

мм,

5

высокоомный

часть.

 

 

 

 

составной резистор, 6 – контактная

 

 

 

 

 

площадка,

 

 

 

 

 

 

 

 

 

Переменный непроволочный резистор круглой формы, характерный для большой группы резисторов СП3 (рис. 69), представляет собой токопроводящий элемент 3 в виде нанесѐнного на подковообразную гетинаксовую пластину композиционного тонкого слоя, по которому скользит подвижный проволочный контакт 1, укрепленный на текстолитовой подвижной части 8 поворотной оси 7 расчеканкой. На концах

подковки‖ и подвижном контакте имеются развальцованные выводы 4. Резистор заключен в пластмассовый 2 или керамический корпус, закрываемый металлическим экраном из стали или латуни (на рисунке не показан). Подстроечные непроволочные резисторы круглой формы могут быть неэкранированными.

Переменные резисторы СПО и СП4 в отличие от резисторов СПЗ имеют запрессованные в керамическое осноснование объѐмные композиционные «подковки» на органической связке армированные в основании аксиальные штыревые

выводы.

Рис. 70. Переменный проволочный резистор:

1 - стопорная разрезная гайка, 2 – ось, 3 – металическая цанговая втулка, 4 – кольцо ползун, 5

– планка-ограничитель, 6 – дугообразная пластина, 7 – пластмассовый корпус, 8 – вывод, 9 - провод

Сильноточные переменные проволочные резисторы (рис. 70) отличаются по материалам и способам установки от слаботочных и подстроечных как круглой, так и прямоугольной формы. В пластмассовом корпусе 7 с помощью цанговой втулки 3 укреплена поворотная ось 2 с кольцом-ползуном 4, которое при повороте оси скользит по ―зачищенному‖ сверху проводу обмотки 9, укрепленной на гетинаксовой (или металлической оксидированной) дугообразной пластине 6.

Основные параметры

Номинальное сопротивление Rном и его допустимое отклонение ±δR.

Сопротивление резисторов (Ом) в общем случае определяется формулой

R = р1/S,

где р и S – удельное электрическое сопротивление, Ом • мм2/м, и площадь поперечного сечения, мм2, токопроводящего элемента; 1– длина пути прохождения тока, м.

Сопротивление поверхностных резисторов цилиндричесхой формы без спиральной нарезки и с нарезкой

R

 

=

рl/(πD1h);

(9)

 

 

 

R

=

рN

πD2/[(t-a)h];

(10)

 

 

 

где 1 – длина образующей цилиндра резистора без нарезки, м; h – толщина токопроводящего слоя, мм; D1 и D2 наружные диаметры керамических стержней соответственно в мм и м; N, t и а – число витков, шаг и ширина спиральной нарезки, мм.

Сопротивление объемных резисторов прямоугольной формы

R = рl/(bc);

где 1, b и с – длина, ширина и высота композиционного стержня, мм. Сопротивление проволочных резисторов

R = 4рl/(πd2);

где 1 и d – длина, м, и диаметр, мм, проволоки.

Сопротивление непроволочных переменных резисторов с токопроводящей ―подковкой‖

R = р(r1+r2) πφ/[(r1+r2) h*360];

где р – удельное поверхностное электрическое сопротивление композиции,

Ом • см; r1 и r2 внешний и внутренний радиусы ―подковы‖, см; φ – угол, соответствующий повороту ползуна на конкретную длину токопроводящего слоя, град.

Сопротивление тонкопленочных резисторов ГИС

R = р l/b;

где р – удельное электрическое сопротивление пленки металла или сплава, пасты, отнесенное к произвольному квадрату ее поверхности, Ом/ٱ; 1 и b – длина и ширина пленочного резистора, мм.

Номинальное сопротивление резистора обычно указано маркировкой на нем. Для резисторов широкого назначения, согласно ГОСТ 10318 – 74, существует шесть рядов номинальных сопротивлений. Е6, Е12, Е24, Е48, Е96 и Е192. Цифра указывает число номинальных значений в данном ряду, которые зависят от допустимого отклонения сопротивления резистора и его номинала. Допустимые в ГОСТ 9б64--74 отклонения сопротивления от номиналов даны (в процентах) рядом чисел: ± 0,01; ± 0,02; ± 0,05; ± 0,1,. ± 0,2,. ± 0,5,. ± 1,. ± 2,. ± 5,. ± 10., ± 20,. ± 30. Прецизионные резисторы имеют

допустимые отклонения сопротивления не хуже ± 2%, резисторы общего назначения – ± 5%; ± 10%; и ± 20% а переменные – до ± 30%.

Номинальная мощность рассеивания Рном Под этой величиной понимают максимально допустимую мощность, которую резистор может длительное время рассеивать при непрерывной электрической нагрузке в заданных условиях эксплуатации, сохраняя параметры в установленных ТУ пределах. Эта величина зависит от температуры окружающей среды и приложенного напряжения, что отражается ТУ на резисторы в зависимостях коэффициента нагрузки k= Рдоп / Рном от этих двух факторов.

Согласно ГОСТ 9663 – 61, значения Рном (Вт) выбирают из ряда 0,01; 0,025; 0,05; 0,125; 0,25; 0,5; 1; 2; 5; 8; 10; 16; 25; 50; 75; 100; 160; 250; 500. Как правило, чем выше номинальная мощность рассеивания, тем больше габариты резисторов. В большинстве блоков РЭА и ЭВА применяют резисторы, номинальная мощность рассеивания которых не выше 2 Вт. При этом следует учесть, что для надежного функционирования аппаратуры коэффициент нагрузки обычно выбирают не более 0,3.

Предельное рабочее напряжение Uпр. Максимально допустимое напряжение, приложенное к выводам резистора, которое не вызывает превышения норм ТУ на электрические параметры, называют предельным рабочим

напряжением. Эта величина обычно задается для нормальных условий эксплуатации и зависит от длины резистора, шага спиральной нарезки, температуры и давления окружающей среды. Чем выше температура и ниже атмосферное давление, тем вероятнее тепловой или электрический пробой и отказ резистора.

Температурный коэффициент сопротивления (ТКС). Этот параметр характеризует относительное изменение сопротивления резистора при изменении температуры окружающей среды на 1оС и выражается в 1 оС:

ТКС = дR/(R0 дt),

где дR – абсолютное изменение сопротивления резистора, Ом, в диапазоне температур дt = t – t0, оС; R0сопротивление резистора (Ом) при нормальной температуре t0; t – положительная или отрицательная предельная температура эксплуатации резистора по ТУ, оС.

Значения ТКС для группы резисторов С1 не превышают – (5 ÷ 20)*104

1/оС, для группы С2 – ± (7 ÷ 16) *104 1/оС,. для группы С3 – + (10 ÷ 25) *104 1/

оС, для группы С4 – ( – 20 ÷ + 6) *104 1/ оС. и для группы С5 – ( – 5÷ + 10) *104 1/ оС, в том числе для прецизионных + (0,15 ÷ 1,5)*104 1/ оС. Для большинства групп резисторов эта величина является линейной, а в случаях, когда она изменяется по резко нелинейному закону, в ТУ указывают не ее, а предельные относительные изменения сопротивления при крайних значениях рабочих температур. Значение и знак ТКС определяются в основном температурным коэффициентом удельного сопротивления - (ТКр) материала токопроводящего слоя. Так, проволочные резисторы имеют малый положительный ТКС; углеродистые – отрицательный среднего значения (с увеличением температуры увеличивается контактируемость «зерен» слоя и сопротивление уменьшается); полупроводниковые – большой отрицательный

(уменьшается сопротивление р-n-переходов), а металлизированные и композиционные – знакопеременный средний и большой (в зависимости от того, что преобладает: контактируемость «зерен» или увеличение сопротивления под действием хаотического движения электронов в «зернах»).

Шумы. При приложении к резисторам постоянного или переменного напряжения в них наблюдаются шумы. Шум представляет собой переменную составляющую, накладываемую на постоянный уровень напряжения резистора, что создает помехи для прохождения сигнала и ограничивает, в частности, чувствительность радиоприемных трактов РЭА. Особенно вредны шумы резисторов, используемых во входных цепях радиоприемников, так как они усиливаются вместе с принимаемым полезным сигналом.

Собственные шумы резисторов имеют двоякую структуру. Это так называемые тепловые и токовые шумы. Тепловые шумы возникают под действием хаотического движения электронов в токопроводящем слое («броуновское движение»), что приводит к случайным микроизменениям сопротивления резистора и, следовательно, к появлению переменных пульсаций напряжения на нем. Тепловые шумы при увеличении температуры возрастают. Они присущи всем видам резисторов, но по значению меньше токовых и поэтому характерны лишь для проволочных резисторов, в которых ―токовые‖ шумы отсутствуют.

Злектродвижущая сила (мкВ) тепловых шумов Еш.т.= 4kТКдЕ,

где-k – постоянная Больцмана, равная 1,38 • 10-23 Дж/К; Т – температура, К; R

сопротивление, Ом; дF – полоса частот применяемого резистора, Гц. Токовые шумы возникают в резисторах с зернистой структурой –

углеродистых, металлизированных и композиционных. Прохождение тока носит случайный характер и наиболее вероятно там, где в данный момент соприкасаемость «зерен» повышена. Уровень токовых шумов, мкВ/В, определяется отношением действующего значения случайной составляющей Е, к постоянному напряжению U, приложенному к резистору: D = Еш.т./U. С увеличением приложенного напряжения токовые шумы возрастают.

Наиболее шумящими резисторами являются композиционные, поэтому применение их во входных цепях приемных устройств ограничено. По уровню токовых шумов резисторы делятся на следующие группы: С1 и С2 < 1,5 мкВ/В, С3 ( 40 мкВ/В; С4 < 45 мкВ/В. Проволочные резисторы группы С5, как уже отмечалось, обладают лишь тепловыми шумами, гораздо меньшими (на порядок), чем токовые.

Частотные свойства резисторов. При работе резисторов в диапазоне частот сопротивление может изменяться относительно его номинала при постоянном токе, что приводит к изменению выходных параметров и устойчивости работы функциональных узлов, блоков и РЭА в целом. Эти изменения, особенно для мегагерцевого диапазона частот, могут составлять единицы децибел.

В общем случае упрощенная эквивалентная схема резистора для высоких частот (рис.71) кроме собственно активного сопротивления R включает реактивные составляющие – индуктивности L’пар и L"пар и емкость

Спар. Так как они ухудшают частотные свойства резисторов, их часто называют паразитными. В различных типах резисторов паразитные индуктивности и емкость образуются по-разному, поэтому и меры, предусматривающие их уменьшение, также отличаются. Более подробно мы рассмотрим это при

описании конкретных типов резисторов. В проволочных резисторах паразитные индуктивности образуются в обмотке провода и в выводах, а паразитная емкость - между витками обмотки.

Рис. 71. Эквивалентная схема резистора для высоких частот

Проволочные резисторы по сравнению с непроволочными гораздо менее высокочастотны и применение их без принятия специальных мер ограничивается областью постоянного тока и диапазоном звуковых частот.

С увеличением частоты, как известно, индуктивная составляющая полного сопротивления растет, а емкостная уменьшается, поэтому сопротивление проволочного резистора может в принципе изменяться и в ту и в другую сторону. Однако с увеличением частоты сопротивление проволочного сопротивления резистора всегда увеличивается. Объясняется это и другой более важной причиной– действием поверхностного эффекта. С увеличением частоты переменного поля в толще проводника индуцируются токи (токи Фуко), которые вытесняют проходящий переменный ток на поверхность проводника. При этом действующее сечение проводника по сравнению с его сечением для постоянного тока (полным сечением) уменьшается и в проводниках круглого сечения принимает форму кольца, образованного разностью между внешним диаметром проволоки d и диаметром, равным d – хэ, (рис. 72).

Величину хэ≈1/2 р/(fµ) называют глубиной (мм) проникновения высокочастотного тока в проводник (где р – удельное объемное сопротивление, Ом • мм2/м; f – частота переменного тока, МГц; µ – относительная магнитная проницаемость). Чем выше частота, тем меньше хэ,.

иплощадь кольца и тем больше сопротивление проволочного резистора.

Внепроволочных резисторах действием поверхностного эффекта можно. пренебречь, так как они имеют зернистую структуру и диаметр зерен, как правило, гораздо меньше глубины проникновения. Для них частотные зависимости сопротивления в основном определяются паразитными емкостью и индуктивностью. В непроволочных резисторах без спиральной нарезки (низкоомных) сопротивление увеличивается с частотой, так как в их эквивалентной схеме нет паразитной емкости, а есть паразитная индуктивность. Для непроволочных резисторов со спиральной нарезкой, наоборот, влиянием паразитной индуктивности можно пренебречь. Уменьшение сопротивления обусловлено шунтирующим действием паразитной емкости, образуемой как распределенная емкость в пазах нарезки (рис..73). Чем толще поверхностный токопроводящий слой, выше диэлектрическая проницаемость покрытия и больше число витков нарезки, тем больше паразитная емкость и хуже частотные свойства резистора.

Нелинейные свойства резисторов. Сопротивление резистора может изменяться также в зависимости от режима его работы (приложенного напряжения, протекающего тока, вида переменного поля – непрерывный или импульсный режим). При этом изменения сопротивления выражаются в процентах на единицу напряжения или тока либо просто в процентах при переходе на единицу напряжения или тока либо просто в процентах при переходе от непрерывного режима к импульсному и оцениваются соответственно коэффициентами напряжения, нагрузки или коэффициентом импульсной нагрузки.

Резисторы общего назначения. Резисторы общего назначения используются в качестве элементов аппаратуры средней точности (5 – 20%) и имеют номинальные значения сопротивления от единиц ом до 10 МОм, рабочие напряжения в пределах сотен вольт, диапазон номинальных мощностей рассеивания от 0,125 до 2 Вт и вьше, частотный диапазон до десятков мегагерц, среднее значение ТКС порядка 103 1/oС и изменяют сопротивление к концу срока службы (хранения) не более чем на ±10%.

Резисторы этой группы используются в РЭА широкого потребления, а также в электрических цепях аппаратуры специального назначения, к которым не, предъявляют повышенных требований точности, стабильности и высокочастотности, в качестве анодных и коллекторных нагрузок, сопротивлений утечки и смещения в цепях эмиттера, базы, истока и стока, шунтов колебательных контуров и др.

Постоянные резисторы. Среди множества типов резисторов, выпускаемых промышленностью, большинство является постоянными общего назначения. В их конструкциях используются практически все виды токопроводящих элементов. Так как резисторы, применяемые в микроэлектронной аппаратуре, должны иметь малые массу. и габариты,

постепенно исчезают резисторы больших номинальных мощностей рассеивания и, наоборот, появляются резисторы милливаттных мощностей. Учитывая это, рассмотрим постоянные резисторы общего назначения, номинальная мощность которых не превышает 2Вт. Некоторые типы этих резисторов показаны на рис. 74, а – г.

У г л е р о д и с т ы е р е з и с т о р ы , предназначенные для цепей постоянного, переменного и импульсного токов радиотехнической и электронной аппаратуры, изготовляются термическим испарением гептана на керамические цилиндрические стержни, имеют радиальные или аксиальные выводы и являются резисторами поверхностного типа. Снаружи резисторы покрыты гидрофобной эмалью зеленого цвета и выпускаются обычного и тропического исполнения. Большинство этих резисторов имеют максимальную рабочую температуру 100оС и рабочую температуру 40 оС, при которой допустим коэффициент нагрузки, равный единице; для

резисторов тропического исполнения эти температуры соответственно равны

125 и 70 оС.

Резисторы этой группы достаточно высокочастотны, так как обладают небольшой паразиткой емкостью в витках нарезки из-за меньшей толщины токопроводящего слоя (сотые доли микрометра), малогабаритны и стабильны (их ТКС средний и всегда отрицательный). Однако из-за широкого применения металлопленочных и быстрого развития микропроволочных высокостабильных резисторов, некоторые типы которых по массе и габаритам не уступают углеродистым, их применение ограничено.

В настоящее время выпускаются углеродистые резисторы С1, предназначенные для работы в условиях сухого и влажного тропического климата, габариты и масса которых значительно меньше, чем у ранее выпускаемых резисторов ВС. Кроме того, они более влагостойки и менее подвержены обрастанию плесневыми грибками.

Металлопленочные резисторы, предназначенные для цепей постоянного, переменного и импульсного токов аппаратуры нормального и тропического исполнения, тепло и влагостойкости, обладают повышенной механической прочностью и часто используются в РЭА. широкого и специального назначения, особенно малогабаритной, так как по размерам

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]