Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lectures_10.docx
Скачиваний:
82
Добавлен:
17.03.2016
Размер:
3.03 Mб
Скачать
    1. Транспортные протоколы Интернета: tcp

UDP является простым протоколом и имеет определенную область применения. В первую очередь, это клиент-серверные взаимодействия и мультимедиа. Тем не менее, большинству интернет-приложений требуется надежная, последовательная передача. UDP не удовлетворяет этим требованиям, поэтому требуется иной протокол. Такой протокол называется TCP, и он является рабочей лошадкой Интернета. Позже мы рассмотрим его детально.

    1. Основы tcp

Протокол TCP (Transmission Control Protocol – протокол управления передачей) был специально разработан для обеспечения надежного сквозного байтового потока по ненадежной интерсети. Объединенная сеть отличается от отдельной сети тем, что ее различные участки могут обладать сильно различающейся топологией, пропускной способностью, значениями времени задержки, размерами пакетов и другими параметрами. При разработке TCP основное внимание уделялось способности протокола адаптироваться к свойствам объединенной сети и отказоустойчивости при возникновении различных проблем.

Протокол TCP описан в RFC 793. Со временем были обнаружены различные ошибки и неточности, и по некоторым пунктам требования были изменены. Под-робное описание этих уточнений и исправлений дается в RFC 1122. Расширения протокола приведены в RFC 1323.

Каждая машина, поддерживающая протокол TCP, обладает транспортной сущностью TCP, являющейся либо библиотечной процедурой, либо пользовательским процессом, либо частью ядра системы. В любом случае, транспортная сущность управляет TCP-потоками и интерфейсом с IP-уровнем. ТСР-сущность принимает от локальных процессов пользовательские потоки данных, разбивает их на куски, не превосходящие 64 Кбайт (на практике это число обычно равно 1460 байтам данных, что позволяет поместить их в один кадр Ethernet с заголовками IP и TCP), и посылает их в виде отдельных IP-дейтаграмм. Когда IP-дейтаграммы с TCP-данными прибывают на машину, они передаются ТСР-сущности, которая восстанавливает исходный байтовый поток. Для простоты мы иногда будем употреблять «ТСР» для обозначения транспортной сущности TCP (части программного обеспечения) или протокола TCP (набора правил). Из контекста будет понятно, что имеется в виду. Например, в выражении «Пользователь передает данные ТСР» подразумевается, естественно, транспортная сущность TCP.

Уровень IP не гарантирует правильной доставки дейтаграмм, поэтому именно TCP приходится следить за истекшими интервалами ожидания и в случае необходимости заниматься повторной передачей пакетов. Бывает, что дейтаграммы прибывают в неправильном порядке. Восстанавливать сообщения из таких дейтаграмм обязан также TCP. Таким образом, протокол TCP призван обеспечить надежность, о которой мечтают многие пользователи и которая не предоставляется протоколом IP.

    1. Модель службы tcp

В основе службы TCP лежат так называемые сокеты (гнезда или конечные точки), создаваемые как отправителем, так и получателем. Они обсуждались в разделе «Сокеты Беркли». У каждого сокета есть номер (адрес), состоящий из IP-адреса хоста и 16-битного номера, локального по отношению к хосту, называемого портом. Портом в TCP называют TSAP-адрес. Для обращения к службе TCP между сокетом машины отправителя и сокетом машины получателя должно быть явно установлено соединение. Примитивы сокетов приведены в табл. 6.2

Один сокет может использоваться одновременно для нескольких соединений. Другими словами, два и более соединений могут оканчиваться одним сокетом. Соединения различаются по идентификаторам сокетов на обоих концах – {socket1, socket2). Номера виртуальных каналов или другие идентификаторы не используются.

Номера портов со значениями ниже 1024, называемые популярными портами, зарезервированы стандартными сервисами. Например, любой процесс, желающий установить соединение с хостом для передачи файла с помощью протокола FTP, может связаться с портом 21 хоста-адресата и обратиться, таким образом, к его FTP-демону. Список популярных портов приведен на сайте www.iana.org. Таких портов на данный момент более 300. Некоторые из них включены в табл. 6.4.

Можно было бы, конечно, связать FTP-демона с портом 21 еще во время за-грузки, тогда же связать демона telnet с портом 23, и т. д. Однако если бы мы так сделали, мы бы только зря заняли память информацией о демонах, которые, на самом деле, большую часть времени простаивают. Вместо этого обычно пользуются услугами одного демона, называемого в UNIX inetd, который связывается с несколькими портами и ожидает первое входящее соединение. Когда оно происходит, inetd создает новый процесс, для которого вызывается подходящий демон, обрабатывающий запрос. Таким образом, постоянно активен только inetd, остальные вызываются только тогда, когда для них есть работа. Inetd имеет специальный конфигурационный файл, из которого он может узнать о назначении портов. Это значит, что системный администратор может настроить систему таким образом, чтобы с самыми загруженными портами (например, 80) были связаны постоянные демоны, а с остальными – inetd.

Порт Протокол Использование

21 FTP Передача файлов

23 Telnet Дистанционный вход в систему

25 SMTP Электронная почта

69 TFTP Простейший протокол передачи файлов

79 Finger Поиск информации о пользователе

80 HTTP Мировая Паутина

110 POP-3 Удаленный доступ к электронной почте

119 NNTP Группы новостей

Все TCP-соединения являются полнодуплексными и двухточечными. Полный дуплекс означает, что трафик может следовать одновременно в противоположные стороны. Двухточечное соединение подразумевает, что у него имеются ровно две конечные точки. Широковещание и многоадресная рассылка протоколом TCP не поддерживаются.

TCP-соединение представляет собой байтовый поток, а не поток сообщений. Границы между сообщениями не сохраняются. Например, если отправляющий процесс записывает в TCP-поток четыре 512-байтовых порции данных, эти данные могут быть доставлены получающему процессу в виде четырех 512-байтовых порций, двух 1024-байтовых порций, одной 2048-байтовой порции (см. рис. 6.22) или как-нибудь еще. Нет способа, которым получатель смог бы определить, каким образом записывались данные.

Файлы в системе UNIX также обладают этим свойством. Программа, читающая файл, не может определить, как был записан этот файл: поблочно, побайтно или сразу целиком. Как и в случае с файлами системы UNIX, TCP-программы не имеют представления о назначении байтов и не интересуются этим. Байт для них – просто байт.

Получив данные от приложения, протокол TCP может послать их сразу или поместить в буфер, чтобы послать сразу большую порцию данных, по своему усмотрению. Однако иногда приложению бывает необходимо, чтобы данные были посланы немедленно. Допустим, например, что пользователь регистрируется на удаленной машине. После того как он ввел команду и нажал клавишу Enter, важно, чтобы введенная им строка была доставлена на удаленную машину сразу же, а не помещалась в буфер, пока не будет введена следующая строка. Чтобы вынудить передачу данных без промедления, приложение может установить флаг PUSH (протолкнуть).

Некоторые старые приложения использовали флаг PUSH как разделитель сообщений. Хотя этот трюк иногда срабатывает, не все реализации протокола TCP передают флаг PUSH принимающему приложению. Кроме того, если прежде чем первый пакет с установленным флагом PUSH будет передан в линию, TCP-сущность получит еще несколько таких пакетов (то есть выходная линия будет занята), TCP-сущность будет иметь право послать все эти данные в виде единой дейтаграммы, не разделяя их на отдельные порции.

Последней особенностью службы TCP, о которой следует упомянуть, являются срочные данные. Когда пользователь, взаимодействующий с программой в интерактивном режиме, нажимает клавишу Delete или Ctrl-C, чтобы прервать начавшийся удаленный процесс, посылающее приложение помещает в выходной поток данных управляющую информацию и передает ее TCP-службе вместе с флагом URGENT (срочно). Этот флаг заставляет TCP-сущность прекратить накопление данных и без промедления передать в сеть все, что у нее есть для данного соединения.

Когда срочные данные прибывают по назначению, получающее приложение прерывается (то есть «получает сигнал», в терминологии UNIX), после чего оно может считать данные из входного потока и найти среди них срочные. Конец срочных данных маркируется, так что приложение может распознать, где они заканчиваются. Начало срочных данных не маркируется. Приложение должно само догадаться. Такая схема представляет собой грубый сигнальный механизм, оставляя все прочее приложению.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]