Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекция 3.doc
Скачиваний:
57
Добавлен:
17.03.2016
Размер:
1.9 Mб
Скачать

Кафедра общей физики ПетрГУ

Лекция 3. Дифракция света

1. Дифракция Френеля

2. Дифракция Фраунгофера на прямоугольной щели

§1. Получение когерентных волн в оптике.

Метод деления амплитуды волны

Ключевые понятия:

  • дифракция Френеля,

  • зоны Френеля,

  • принцип Гюйгенса,

  • пятно Пуассона,

  • спираль Френеля.

3.1. 1.ОБЩИЕ ПОЛОЖЕНИЯ. В однородных средах волны распространяются прямолинейно. При наличии неоднородностей возникают отклонения от прямолинейности.

Дифракцией называют совокупность волновых явлений наблюдаемых при распространении света в среде с резкими неоднородностями, и связанных с отклонениями от законов геометрической оптики (границы непрозрачных или прозрачных тел, малые отверстия).

Дифракция приводит к огибанию световыми волнами препятствий и проникновению света в область геометрической тени. Опыт Юнга с интерференцией от двух щелей обеспечил прочную основу волновой теории света. Однако общее признание волновая теория получила лишь благодаря детальному изучению дифракции более чем через десятилетие. Фундаментальный смысл дифракции состоит в том, что она ограничивает возможности концентрации света в пространстве, кладет предел разрешающей способности оптических и спектральных приборов, влияет на формирование оптического изображения и т. п.

Пусть, например, непрозрачный экран с круглым отверстием освещается параллельным пучком света. Варианты описания процессов взаимодействия света с веществом не однозначны. Мы можем увидеть:

а) равномерно освещенное круглое пятно с резкой границей света и тени, в точности повторяющее размеры и форму отверстия (геометрическая оптика);

б) граница света и тени становится размытой, а внутри пятна возникают чередующиеся светлые и темные кольца (дифракция Френеля);

в) размер освещенного пятна становится сущес-твенно больше размеров отверстия (дифракция Фраунгофера).

Итак, нам нужен рецепт, который позволял бы описывать законы распространения волн, отличные от законов геометрической оптики.

3.1.2. ПРИНЦИП ГЮЙГЕНСА—ФРЕНЕЛЯ. МЕТОД ЗОН ФРЕНЕЛЯ. Для расчета и объяснения дифракционных явлений применяется принцип Гюйгенса–Френеля. С помощью принципа Гюйгенса можно объяснить проникновение световых волн в область геометрической тени. Но он не дает сведений об амплитуде и интенсивности волн. Френель дополнил принцип Гюйгенса представлением об интерференции вторичных волн. Принцип Гюйгенса-Френеля является рецептом для расчета дифракционных задач, обладающих определенной симметрией. Рассмотрим точечный источник S в изотропной однородной среде. Определим интенсивность света в центре дифракционной картины (точка Р). Источник S и точка наблюдения Р расположены на оси отверстия.

ОкружимS волновой поверхностью G, каждый элемент которой является источником вторичных волн. Далее заменим реальный источник света S вспомогательной поверхностью G, которая содержит всю информацию об источнике. Расстояние от источника S до вершины волновой поверхности равно а, а от вершины до точки Р b. Разобьем из точки Р волновую поверхность G на участки (зоны) так, что расстояния от краев каждой зоны до точки Р отличаются на / 2:

b + / 2; b + 2 / 2; b + 3 / 2; b + 4 / 2; …, b + m / 2,

где m – число зон Френеля. Центральная зона представляет шаровой сегмент, а остальные – шаровые пояса.