Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Vse_lektsii_Bukhtoyarovoy_N.doc
Скачиваний:
81
Добавлен:
23.03.2016
Размер:
6.23 Mб
Скачать

1. Поток вещества

- масса вещества, переносимого через площадь , перпендикулярную движению частиц, в единицу времени.

2. Плотность потока вещества - масса вещества, переносимого через единицу площади, перпендикулярной движению частиц, за единицу времени.

Молекулы жидкости перескакивают из одного равновесного состояния в другое. В одном из равновесных состояний поместим площадку и определим, какое число молекул пройдет через неё из двух ближайших равновесных состоянийи.

Отложим слева и справа от расстояния(длина свободного пробега молекулы) и построим параллепипедыи, площадьюи толщиной.

Объёмы параллепипедов .

Для упрощения будем считать, что молекулы движутся с одинаковыми средними скоростями, где- время свободного пробега (перескока).

Пусть число молекул в единице объёма (концентрация) в первом объёме , во втором. Тогда общее число молекул в первом объёме, во втором -.

Молекулы движутся хаотично по всем трем направлениям: . Из нихдвижется в направлении оси,-,-. Причем в направлении, например, половина из этойдвижется влево, половина - вправо. Поэтому вдоль осиот первого параллепипеда к площадкедвижетсямолекул, а от второго -. Т.о. за времячерез площадкупроходит число молекул

.

Пусть масса одной молекулы , тогда за времячерез

площадку переносится масса вещества

.

Время пролета молекулами площадки параллепипедови(через центральную оно будет таким же)

.

Поток вещества через площадку определится как

.

Можно показать, что

,

где градиент концентраций. Поток вещества тогда запишем как

Через единицу площади переносится поток вещества (плотность потока)

.

Введем массовую концентрацию . Тогда

- градиент массовой концентрации.

Обозначим и назовем её коэффициентом диффузии, а также учтем, что суммарная плотность потока направлена в сторону уменьшения концентрации, и укажем это напрвавлние знаком “-“. Получим уравнение Фика:

.

. Физический смысл коэффициента диффузии: он численно равен массе вещества, переносимого через единичную площадку за 1 секунду при градиенте концентраций равном 1.

, если ,

, если

Лекция 7.

Транспорт веществ через мембрану.

Являясь открытой термодинамической сиситемой, клетка постоянно осуществляет обмен веществом с окружающей средой. Такой обмен возможен благодаря способности клеток пропускать различные вещества через свою оболочку. Эта способность клеток называется проницаемостью.

Перемещение веществ в клетку или из неё в окружающую среду может осуществляться многими способами. В зависимости от того, что является источником энергии для переноса вещестыва, что является силой перемещения, все виды переноса веществ можно разделить на пассивный и активный транспорт.

Пассивный транспорт веществ.

Пассивный транспорт всегда осуществляется за счет энергии, сконцентрированной в каком-либо градиенте. Энергия метаболических процессов клеток (энергия гидролиза АТФ) на этот процесс непосредственно не переносится. Пассивный транспорт всегда идет от более высокого энергетического уровня к более низкому.

Основными градиентами, присущими живым организмам, являются градиенты концентрационные, электрические, осмотические, градиенты гидростатического давления.

В соответствии с этими градиентами имеются следующие виды пассивного транспорта веществ в клетках и тканях: диффузия, осмос, электроосмос, аномальный осмос, фильтрация.

Основным механизмом пассивного транспорта является диффузия- самопроизвольный процесс проникновения вещества из области большей концентрации в область ментшей концентрации в результате теплового хаотического движения.

Перенос незаряженных частиц (атомов и молекул) через мембрану

Очевидно, что при переносе незаряженных частиц единственным градиентом является градиент концентраций. Следовательно, механизм переноса молекул и атомов через мембрану – диффузия, а сам транспорт описывется уравнением Фика:

Концентрационный градиент клеточной мембраны определить трудно, поэтому лучше использовать более простое уравнение, предложенное Коллендором и Берлундом и которое легко вывести из уравнения Фика.

- концентрация вещества в клетке;

- концентрация этого же вещества снаружи клетки;

- концентрация этого же вещества внутри клетки на границе клетка - мембрана;

- концентрация этого же вещества внутри клетки на границе окружающая среда-мембрана.

> . Следовательно, перенос идет из клетки в окружающую среду. Для мембраны

.

Измерить итрудно, но зато экспериментально можно измеритьи. Кроме того, считают, что

- коэффициент распределения частиц между мембраной и окружающей средой. Следовательно,

Тогда

.

Обозначим - проницаемость мембраны, получим

- это и есть уравнение Коллендора-Берлунда.

Перенос заряженных частиц (ионов) через мембрану

Проникновение заряженных частиц через мембрану (а это ионы), через мембрану зависит не только от концентрационного градиента, но и от градиента электрического потенциала. Плотность потока вещества при этом следует рассчитывать как сумму двух слагаемых:

Здесь - плотность потока вещества, обусловленная градиентом концентраций.- плотность потока вещества, обусловленная градиентом электрического потенциала.

Откуда возникает на мембране электрический градиент, т.е. разность потенциалов? Согласно полиэлектролитной теории основой цитоплазмы является комплексный полиэлектролитный гель сетчатой структуры с фиксированными на ней отрицательными зарядами, который способен избирательно накаплиаить ионы . В результате, на наружней поверхности мембраны скапливается положительный заряд и положительный потенциал, а на внутренней - отрицательный потенциал (позже мы покажем это доказательно).Поэтому вокруг мембраны возникает

электричкское поле напряженностью . Это поле убывет по силе при удалении от мембраны. Между напряженностью поля и градиентом потенциала имеется связь:.

Это электрическое поле действует на ионы с силой , ускоряя или замедляя их (заряд всех ионов).

Возьмем 1 моль ионов, в котором содержится ионов. Чтобы найти поток ионов, выделим обеъм электролита в виде прямоугольного параллепипеда с ребом(- скорость движения ионов) и площадью основания. Пусть за время, все ионы, находящиеся в этом объёме, пройдут через площадку. Будем считать, что концентрация ионов равна, следовательно масса 1 моля ионов определится как

,

а поток ионов как . Плотность потока ионов тогда будет

.

Скорость направленного движения ионов пропорциональна действующей силе, где- сила, действующая на 1 ион,заряд иона.

,

где - подвижность ионов.

, где - зарядовое число иона,- заряд электрона. Тогда

.

Здесь-числоФарадея (заряд 1 моля ионов). Следовательно,

, а

.

Это уравнение называется уравнением Нернста-Планка.

Совокупность концентрационного и электрического градиентов называется градиентом электрохимического потенциала.

Виды диффузии.

1. Простая диффузия – диффузия, при которой молекулы

диффундирующего вещества движутся

без образования комплекса с другими молекулами. В живой клетке такая диффузия обеспечивает прохождение кислорода, лекарственных веществ и ядов через мембрану. Механизм такой диффузии простой: в жидкой фазе молекулы фосфолипидов могут образовывать полости (кинки), в которые способны внедряться молекулы перечисленных веществ. Эти кинки движутся поперек мембраны и переносят диффундирующее вещество. Простая диффузия протекает медленно и не может в достаточном количестве обеспечить клетку питательными веществами. Но природа обеспечила другие виды диффузии.

Диффузия через каналы.

Наличие каналов увеличивает проницаемость мембран.

Облегченная диффузия.

Вещество А самостоятельно слабо диффундирует через мембрану. Но скорость диффузии значительно возрастает, когда молекула А+ этого вещества образует комплекс с некоторым вспомогательным веществом Х, которое растворено в липиде. Этот комплекс диффундирует в мембрану, достигает её противоположной стороны, здесь молекула А освобождается и выходит в клетку, а молекула Х освободившись, диффундирует обратно к наружней стороне мембраны, где снова вступает во взаимодействие с другой молекулой А и процесс повторяется.

Переносчики Х могут быть фиксированными и образовывать пору:

Молекула А+ захватывается ближайшей молекулой Х и переходит внутри мембраны от одной молекулы Х к другой по эстафете, достигает противоположной стороны мембраны, где выходит в клетку.

Размеры поры не должны превышать размеров молекулы А.

Молекулы переносчики называются ионофорами.

Обменная диффузия.

Вспомогательное вещество Х образует комплексс молекулой проникающего вещества А+, комплекс диффундирует через мембрану. На другой стороне мембраны молекула А+, освободившись,уходит в клетку, а ионофор берёт из клетки другую молекулу А++ и переносит её в окружающую среду. В результате концентрация вещества А по обе стороны мембраны не меняется, следовательно, этот вид диффузии, фактически не принимает участия в обмене веществ.

Все рассмотренные виды диффузии описываются уравнением Фика, если переносится молекулы или атомы, и уравнением Нернста-Планка, если переносятся ионы.

5.Осмос –движение молекул воды (растворителя) через полупроницаемую мембрану из области большей концентрации растворённого вещества в область меньшей концентрации растворенного вещества. Т.е. это тоже диффузия, но диффузия растворителя.

Сила, которая вызывает это движение растворителя, называется осмотическим давлением.

Плотность потока вещества определяется как

.

Здесь - коэффициент проницаемости;и- осмотическое давление по одну и другую сторону мембраны, соответственно.

6. Фильтрация движение молекул воды (растворителя) через полупроницаемую мембрану из области большей концентрации растворённого вещества в область меньшей концентрации растворенного вещества при наличии гидростатического давления (давления, обусловленного столбом жидкости).

формулу

Явления фильтрации и осмоса имеют особое значение в процессе обмена водой между кровью и тканью.

Активный транспорт.

Пассивный транспорт веществ всегда стремится выровнять неравномерность в распределении вещества между клеткой и средой. Но клеточное содержимое резко отличается по своему составу от окружающей клетку среды. В клетке в большом количестве находятися ионы , недиффундирующие ионы белков, фосфолипидов, анионы аминокислот и др, содержание которых в жидкости, окружающей клетку, незначительно. Другие вещества, наоборот, в значительно более высоких концентрациях содержатся в окружающей клетку жидкости, например,.

В результате такого неравномерного распределения концентраций ионов между клеткой и окружающей средой пассивный перенос не может полностью обеспечить равномерное распределение концентраций. Поэтому в организме одновременно с пассивным транспортом происходит активный транспорт.

Активный транспорт обеспечивает перенос молекул и ионов из области меньших концентраций и электрических потенциалов в область больших концентраций и электрических потенциалов.

Для осуществления такого транспорта клетка совершает работу против градиентов концентраций и потенциалов.

Если через клетку переносится незаряженная частица (атом или молекула), то эта работа равна

,

где - количество молей вещества, перенесенного через мембрану из области меньших концентрацийв область больших концентраций;- универсальная газовая постоянная,- абсолютная температура.

Если переносится ион через электрически заряженную мембрану, то эта работа равна

,

где - валентность ионов,- число Фарадея (заряд 1 моля ионов),разность потенциало между поверхностыми мембраны.зависит от знака заряда ионов.

Чтобы совершить эту работу, клетке нужна энергия. Эту энергию клетка получает пригидролизе фермента (адезинтрифосфатоза).

Особое внимание следует обратить на активный транспорт ионов и, калий – натриевый насос, т.к. именно эти ионы играют большую роль при генерации биоэлектрических потенциалов и проведении возбуждения.

Переход из клетки зависит от концентрацииво внешней среде, а переходв клетку, в свою очередь, эависит от концентрациив цитоплазме.

Предполагают, что перенос иосуществляется специальным переносчиком белковой или белково-липидной природы.

Рассмотрим перенос из окружающей среды в клетку. Он начинается на внутренней поверхности мембраны и происходит в три стадии.

Киназная. Переносчик на внутренней стороне мембраны захватывет из цитоплазмы ион :

Комплекс переносится на наружнюю поверхность мембраны за счет гидролиза.

Ионообменная. На наружней поверхности мембраны ионы обмениваются на ионы

Комплекс снова движется к внутренней стороне мембраны.

3. Фосфатозная. Эта фаза заканчивает цикл на внутренней поверхности мембраны дефосфолированием переносчика и освобождением ионов

Лекция 8

Электромагнитные явления в биологических системах.

Природа биопотенциалов и способы их описания.

Все процессы жизнедеятельности организмов сопровождаются появлением в клетках и тканях электродвижущих сил. Электрические явления играют большую роль в важнейших физиологических процессах: возбуждение клеток и проведение возбуждения по клеткам.

В возникновении биопотенциалов решающую роль играет разность потенциалов, обусловленная несимметричным распределением ионов. К таким разностям потенциалов относятся диффузионные, мембранные и фазовые.

1. Диффузионные потенциалывозникают на границе раздела двух жидких сред в результате различной подвижности ионов. Рассмотрим пример: Имеется раствор серной кислоты, разделенный пористой перегородкой. Пусть концентрацияв левой части больше, чем в правой. Ионыибудут диффундировать из левой части в правую часть сосуда с разной скоростью по градиенту концентрации. Скорость диффузии определяется подвижностью ионов. Подвижность ионовбольше подвижности ионов:Следовательно, ионыбудут намного опережать ионы. По обе стороны перегородки установятся потенциалы: слева “-“ справа “+”. Возникает диффузионная разность потенциалов. Эта разность потенциалов будет замедлять “быстрые“ ионы и ускорять “медленные“, т.е. возникающее электрическое поле направлено против сил диффузии. Диффузионная разность потенциалов максимален в тот момент, когда скорости диффузии становятся равными:

.

Здесь - ;подвижность катионов;- подвижность анионов;- универсальная газовая постоянная;- абсолютная температура;-валент-ность ионов;- число Фарадея;- активная концентрация в области откуда идет диффузия;- активная концентрация в области куда идет диффузия.

2. Мембранный потенциал. В рассматриваемом примере пористую перегородку заменим полупроницаемой мембраной, пропускающую только катионы – положительно заряженные ионы (это может быть мембрана с большой концентрацией фиксированных отрицательных ионов).

В этом случае подвижность ионов при переходе через мембрану не является определяющим фактором – в правую часть переходят только положительно заряженные ионы водорода. Через некоторое время диффузия ионов прекратится, т.к. они испытывают притяжение со стороны оставшихся в левой части ионов. Поэтому установится равновесие , в результате чего возникает двойной электрический слой: слева заряды “-“, справа заряды “+”, между сторонами мембраны возникнет разность потенциалов, называемая мембранным потенциалом, величина которого есть

уравнение Нернста.

3. Фазовый потенциал возникает на границе раздела двух несмешивающихся фаз (например, раствор электролита в воде и какое-нибудь масло) в результате различной растворимости анионов и катионов в неводной фазе. Если, например, катионы растворимы в неводной фазе, то они активнее перейдут в нее и зарядят ее положительно относительно водной фазы. Наблюдается фазовый потенциал при механическом повреждении мембраны.

Равенство Доннана.

При выводе уравнений, описывающих распределение ионов между клеткой и окружающей средой, выполняется условие электронейтральности, равенство суммарной концентрации анионов ( в основном и ионов макромолекул) катионов

как внутри клетки

,

так и снаружи клетки

.

Здесь -- число отрицательных зарядов на каждой белковой молекуле.

В межклеточной жидкости содержание катионов значительно выше, чем ионов макромолекул . Поэтому

- равенство Доннана

Потенциал покоя

Экспериментально установлено, что цитоплазма в состоянии покоя имеет отрицательный потенциал, а окружающая среда- положительный.

Действительно, в первом приближении

В клетке в 20-40 раз.

Снаружи в 10 раз.

Это неравномерное распределение концентраций обусловлено насосом, при котором при переносепереносится. Кроме того, в клетке имеются анионы макромолекул(белков, аминокислот, и др.).

Ионы внутри клетки не связаны с другими ионами и могут диффундировать туда, где их мало, т.е. в окружающую среду. Т.е. в состоянии покоя клетка проницаема только для ионов. Анионы не могут проникать через мембрану и остаются на внутренней поверхности мембраны. Т.о. мембрана снаружи зарядится положительно, а внутри – отрицательно.

Между внутренней и внешней поверхностями мембраны возникает разность потенциалов мембранной природы. Эта разность потенциалов между клеткой и окружающей средой, измеренная в состоянии физиологического покоя, называется потенциалом покоя.

Если принять, в первом приближении, что потенциал покоя определяется только диффузией ионов , то величина потенциала покоя определяется как

уравнение Нернста.

- активная концентрация ионоввнутри клетки,

- активная концентрация ионовснаружи.

Если =, токлетка мертва.

Но , поэтому. Например, для аксона гигантского кальмара

, а это подтверждает, что в основе возникновения потенциала действия лежит перенос ионов.

В реальности в состоянии покоя мембрана проницаема не только для ионов , но и для ионови. Например, для аксона гигантского кальмара экспериментально установлено, что. Основной вклад в потенциал покоя вносят ионыи. Ионовпереносится очень мало. Поэтому навнешней поверхности сосредоточивается положительный заряд, а на внутренней – отрицательный. Потенциал покоя определяется тремя диффузионными потоками и вычисляется (с учетом равенства Доннана) по формуле

.

Кроме простой диффузии ионов иможет идти обменная диффузия, но, как мы отмечали, потоки их равны и обменная диффузия не влияет на мембранный потенциал.

Потенциал действия.

Все клетки возбудимых тканей (нервная, мышечная, железистая) под действием различных раздражителей достаточной силы способны переходить в возбужденное состояние. Обязательным признаком возбуждения является изменение электрического состояния мембраны.

Опыт показывает, что возбужденный участок становится электроотри-цательным по отношению к невозбужденному участку. Следовательно, на возбужденном участке происходит перераспределение ионов. При возбуждении это перераспределение кратковременно и концентрации восстанавливаются после снятия возбуждения, а разность потенциалов становится равной исходной, т.е. потенциалу покоя. Для аксона кальмара обнаружена такая зависимость изменения потенциала при возбуждении от времени

- потенциал покоя;мембранный потенциал при возбуждении;

- общее изменение разности потенциалов.

Общее изменение разности потенциалов между клеткой и окружающей средой, происходящее при пороговом и сверхпороговом возбуждении клетки, называется потенциалом действия.

Механизм возникновения потенциала действия. В 1938 году Круэл и Картис показали, что сопротивление аксона кальмара в состоянии покоя 1000 Ом/см2, а при возбуждении 25 Ом/см2, т.е. уменьшается в 40 раз. При этом сопротивление цитоплазмы не изменяется. Следовательно, уменьшение сопротивления мембраны обусловлено только её проницаемости для ионов, т.к. именно они являются переносчиками электричества в мембранах и клетках.

Хаджкин, Хаксли и Катц показали, что при возбуждении про-ницаемость мембраны увеличивается только для ионов , причем в 500 раз. Это приводит к увеличению диффузии ионовиз окружающей среды в клетку (по концентрационному градиенту), что приводит к изменению потенциала мембраны. В первые моменты возбуждения интенсивность потока ионовиз клетки остается такой же, как и до возбуждения.

Поэтому поток ионов вызывает исчезновение избыточного отрицательного потенциала на внутренней поверхности мембраны. Эта фаза называется деполяризацией и длится короткое время. Затем начинается другая фаза – реполяризация., заключающаяся в следующем. Диффузия ионоввнутрь клетки нарушает равновесие концентраций в клетке. В связи с этим повышается проницаемость мембраны для ионов, начинается диффузия ионовиз клетки в окружающую среду. Поток ионовиз клетки приводит к уменьшению проницаемости для ионов. В результате происходит реполяризация мембраны и восстановление потенциала покоя. Проницаемость мембраны для ионовипадает до исходной величины. Фаза реполяризации длится дольше фазы деполяризации, поэтому и кривая более пологая.

В некоторых случаях регистрируется так называемый следовой потенциал, как на данном рисунке. Он вызван тем, что после окончания возбуждения проницаемость мембраны для ионов иостпется повышенной.

Т.о. формирование потенциала действия обусловлено двумя потоками через мембрану: поток внутрь клетки приводит к перезарядке мембраны, а противоположный потокобусловливает восстановление потенциала. Потоки эти приблизительно равны по величине, но сдвинуты по времени. Благодаря этому сдвигу во времени и возможно появление потенциала действия.

Распространение потенциала действия.

(проведение возбуждения по нервным волокнам).

Потенциал действия, возникнув в одном участке нервной клетки, распространяется по всей её поверхности.

В результате возбуждения между возбужденным и невозбужденным участками возникает разность потенциалов. Эта разность потенциалов создает электрический ток, называемый локальным током (от невозбужденного участка к возбужденному). Локальный ток оказывает на соседний невозбужденный участок такое же действие как и исходный возбудитель и увеличивает проница-емость мембраны для ионов . В результате и в этом участке снижкется потенциал покоя и возникает потенциал действия.

В участке, который был ранее возбужден, происходят восстановительные процессы реполяризации.

Этот процесс повторяется многократно и обусловливает распространение импульсов по всей длине клетки в обоих направлениях. Разность потенциалов между возбужденным и невозбужденным участками изменяется как

Волна возбуждения под влиянием локальных токов распространяется по нервному волокну без затухания. Это обусловлено тем, что локальные токи только деполяризуют мембрану, а потенциал действия в каждом участке мембраны поддерживается независимыми потоками, перпендикулярно направлению распространения возбуждения, т.е. источником энергии такой электромагнитной волны является сама среда.

Если в нервных волокнах нет миелиновых оболочек, то возбуждение в них распространяется так, как мы рассмотрели.

Если же имеются миелиновые оболочки (миелин жироподобное вещество - диэлектрик), то локальные токи распространяются между участками, на которых оболочки прерываютсямежду перехватами Ранвье, т.к. миелин является изолятором:

Лекция 8

Электромагнитные явления в биологических системах

Природа биопотенциалов и способы их описания

Все процессы жизнедеятельности организмов сопровождаются появлением в клетках и тканях электродвижущих сил. Электрические явления играют большую роль в важнейших физиологических процессах: возбуждение клеток и проведение возбуждения по клеткам.

В возникновении биопотенциалов решающую роль играет разность потенциалов, обусловленная несимметричным распределением ионов. К таким разностям потенциалов относятся диффузионные, мембранные и фазовые.

1. Диффузионные потенциалывозникают на границе раз-

дела двух жидких сред в результате различной подвижности ионов. Рассмотрим пример: имеется раствор серной кислоты, разделенный пористой перегородкой. Пусть концентрация в левой части больше, чем в правой. Ионыибудут диффундироватьиз левой части в правую часть сосуда с разной скоростью по градиенту концентрации. Скорость диффузии определяется подвижностью ионов. Подвижность ионовбольше подвижности ионов:Следовательно, ионыбудут намного опережать ионы. По обе стороны перегородки установятся потенциалы: слева “-“ справа “+”. Возникает диффузионная разность потенциалов. Эта разность потенциалов будет замедлять “быстрые“ ионы и ускорять “медленные“, т.е. возникающее электрическое поле направлено против сил диффузии. Диффузионная разность потенциалов максимален в тот момент, когда скорости диффузии становятся равными:

.

Здесь - ;подвижность катионов;- подвижность анионов;- универсальная газовая постоянная;- абсолютная температура;-валентность ионов;- число Фарадея;- активная концентрация в области откуда идет диффузия;- активная концентрация в области куда идет диффузия.

2. Мембранный потенциал. В рассматриваемом примере пористую перегородку заменим полупроницаемой мембраной, пропускающую только катионы – положительно заряженные ионы (это может быть мембрана с большой концентрацией фиксированных отрицательных ионов).

В этом случае подвижность ионов при переходе через мембрану не является определяющим фактором – в правую часть переходят только положительно заряженные ионы водорода. Через некоторое время диффузия ионов прекратится, т.к. они испытывают притяжение со стороны оставшихся в левой части ионов. Поэтому установится равновесие , в результате чего возникает двойной электрический слой: слева заряды “-“, справа заряды “+”, между сторонами мембраны возникнет разность потенциалов, называемая мембранным потенциалом, величина которого есть

уравнение Нернста.

3. Фазовый потенциал возникает на границе раздела двух несмешивающихся фаз (например, раствор электролита в воде и какое-нибудь масло) в результате различной растворимости анионов и катионов в неводной фазе. Если, например, катионы растворимы в неводной фазе, то они активнее перейдут в нее и зарядят ее положительно относительно водной фазы. Наблюдается фазовый потенциал при механическом повреждении мембраны.

Равенство Доннана.

При выводе уравнений, описывающих распределение ионов между клеткой и окружающей средой, выполняется условие электронейтральности, равенство суммарной концентрации анионов ( в основном и ионов макромолекул) катионов

как внутри клетки

,

так и снаружи клетки

.

Здесь -число отрицательных зарядов на каждой белковой молекуле.

В межклеточной жидкости содержание катионов значительно выше, чем ионов макромолекул . Поэтому

- равенство Доннана

Потенциал покоя

Экспериментально установлено, что цитоплазма в состоянии покоя имеет отрицательный потенциал, а окружающая среда- положительный.

Действительно, в первом приближении

В клетке в 20-40 раз.

Снаружи в 10 раз.

Это неравномерное распределение концентраций обусловлено насосом, при котором при переносепереносится. Кроме того, в клетке имеются анионы макромолекул(белков, аминокислот, и др.).

Ионы внутри клетки не связаны с другими ионами и могут диффундировать туда, где их мало, т.е. в окружающую среду. Т.е. в состоянии покоя клетка проницаема только для ионов. Анионы не могут проникать через мембрану и остаются на внутренней поверхности мембраны. Т.о. мембрана снаружи зарядится положительно, а внутри – отрицательно.

Между внутренней и внешней поверхностями мембраны возникает разность потенциалов мембранной природы. Эта разность потенциалов между клеткой и окружающей средой, измеренная в состоянии физиологического покоя, называется потенциалом покоя.

Если принять, в первом приближении, что потенциал покоя определяется только диффузией ионов , то величина потенциала покоя определяется как

уравнение Нернста.

- активная концентрация ионоввнутри клетки,

- активная концентрация ионовснаружи.

Если =, токлетка мертва.

Но , поэтому. Например, для аксона гигантского кальмара

, а это подтверждает, что в основе возникновения потенциала действия лежит перенос ионов.

В реальности в состоянии покоя мембрана проницаема не только для ионов , но и для ионови. Например, для аксона гигантского кальмара экспериментально установлено, что. Основной вклад в потенциал покоя вносят ионыи. Ионовпереносится очень мало. Поэтому на внешней поверхности

сосредоточивается положительный заряд,а на внутренней – отрицательный. Потенциал покоя определяется тремя диффузионными потоками и вычисляется (с учетом равенства Доннана) по формуле

.

Кроме простой диффузии ионов иможет идти обменная диффузия, но, как мы отмечали, потоки их равны и обменная диффузия не влияет на мембранный потенциал.

Потенциал действия.

Все клетки возбудимых тканей (нервная, мышечная, железистая) под действием различных раздражителей достаточной силы способны переходить в возбужденное состояние. Обязательным признаком возбуждения является изменение электрического состояния мембраны.

Опыт показывает, что возбужденный участок становится

электроотрицательным по отношению к

невозбужденному участку. Следовательно, на возбужденном участке происходит перераспределение ионов. При возбуждении это перераспределение кратковременно и концентрации восстанавливаются после снятия возбуждения, а разность потенциалов становится равной исходной, т.е. потенциалу покоя. Для аксона кальмара обнаружена такая зависимость изменения потенциала при возбуждении от времени

- потенциал покоя;мембранный потенциал при возбуждении;

- общее изменение разности потенциалов.

Общее изменение разности потенциалов между клеткой и окружающей средой, происходящее при пороговом и сверхпороговом возбуждении клетки, называется потенциалом действия.

Механизм возникновения потенциала действия. В 1938 году Круэл и Картис показали, что сопротивление аксона кальмара в состоянии покоя 1000 Ом/см2, а при возбуждении 25 Ом/см2, т.е. уменьшается в 40 раз. При этом сопротивление цитоплазмы не изменяется. Следовательно, уменьшение сопротивления мембраны обусловлено только её проницаемости для ионов, т.к. именно они являются переносчиками электричества в мембранах и клетках.

Хаджкин, Хаксли и Катц показали, что при возбуждении проницаемость мембраны увеличивается только для ионов , причем в 500 раз. Это приводит к увеличению диффузии ионовиз окружающей среды в клетку (по концентрационному градиенту), что приводит к изменению потенциала мембраны. В первые моменты возбуждения интенсивность потока ионов

из клетки остается такой же, как и до возбуждения. Поэтому поток ионов вызывает исчезновение избыточного отрицательного потенциала на внутренней поверхности мембраны. Эта фаза называется деполяризацией и длится короткое время. Затем начинается другая фаза – реполяризация., заключающаяся в следующем. Диффузия ионоввнутрь клетки нарушает равновесие концентраций в клетке. В связи с этим повышается проницаемость мембраны для ионов, начинается диффузия ионовиз клетки в окру-жающую среду. Поток ионовиз клетки приводит к уменьшению проницаемости для ионов. В результате происходит реполяризация мембраны и восстановление потенциала покоя. Проницаемость мембраны для ионовипадает до исходной величины. Фаза реполяризации длится дольше фазы деполяризации, поэтому и кривая более пологая.

В некоторых случаях регистрируется так называемый следовой потенциал, как на данном рисунке. Он вызван тем, что после окончания возбуждения проницаемость мембраны для ионов иостпется повышенной.

Т.о. формирование потенциала действия обусловлено двумя потоками через мембрану: поток внутрь клетки приводит к перезарядке мембраны, а противоположный потокобусловливает восстановление потенциала. Потоки эти приблизительно равны по величине, но сдвинуты по времени. Благодаря этому сдвигу во времени и возможно появление потенциала действия.

Распространение потенциала действия.

(проведение возбуждения по нервным волокнам).

Потенциал действия, возникнув в одном участке нервной клетки, распространяется по всей её поверхности.

В результате возбуждения между возбужденным и невозбужденным участками возникает разность потенциалов. Эта разность потенциалов создает электрический ток, называемый локальным током (от невозбужденного участка к возбужденному). Локальный ток оказывает на соседний невозбужденный участок такое же действие как и исходный возбудитель и увеличивает проница-емость мембраны для ионов . В результате и в этом участке снижкется потенциал покоя и возникает потенциал действия.

В участке, который был ранее возбужден, происходят восстановительные процессы реполяризации.

Этот процесс повторяется многократно и обусловливает распространение импульсов по всей длине клетки в обоих направлениях. Разность потенциалов между возбужденным и невозбужденным участками изменяется как

Волна возбуждения под влиянием локальных токов распространяется по нервному волокну без затухания. Это обусловлено тем, что локальные токи только деполяризуют мембрану, а потенциал действия в каждом участке мембраны поддерживается независимыми потоками, перпендикулярно направлению распространения возбуждения, те. Источником энергии такой электромагнитной волны является сама среда.

Если в нервных волокнах нет миелиновых оболочек, то возбуждение в них распространяется так, как мы рассмотрели.

Если же имеются миелиновые оболочки (миелин жироподобное вещество - диэлектрик), то локальные токи распространяются между участками, на которых оболочки прерываются между перехватами Ранвье, т.к. миелин является изолятором:

Лекция 9

Биофизические принципы исследования

Электрических полей в организме.

Нервные волокна, мышцы, и, следовательно, клетки, по которым распространяется раздражение, можно моделировать как электрический диполь. Действительно:

Электрический диполь

Электрический диполь- система двух точечных зарядов, равных по величине и противоположных по знаку и находящихся на некотором расстоянии друг от друга.

Основные характеристики диполя:

Плечо диполя - вектор по величине равный расстоянию между зарядами и направленный от отрицательного заряда к положительному.

Электрический дипольный момент диполя .

Вектор приложен к центру диполя и направлен от отрицательного заряда к положительному.

.

Вокруг диполя образуется электрическое поле, основными характеристиками которого являются напряженность (силовая характеристика) и потенциал и разность потенциалов (энергетические характеристики).

Напряженность электрического поля диполя.

По определению напряженность электрического поля определяется как сила, действующая со стороны поля на единичный пробный заряд :

.

Пробным зарядом называется точечный положительный заряд, электрическое поле которого не искажает исследуемое электрическое поле.

По закону Кулона в вакууме ив среде.

Если заряд - одиночный заряд, создающий поле, а, которым мы исследуем поле заряда, то, а.

Графически электрическое поле изображается с помощью силовых линий – линий, касательные к которым совпадают с вектором . Для поля одиночного заряда электрическое поле изображается так:

Если поле образуется несколькими зарядами, то напряженность в каждой точке общего поля определяется по принципу суперпозиции, который для поля образованного двумя зарядами диполя записывается как

.

В скалярном виде напряженность находится так:

а) на оси диполя в точку, в которой рассчитывается напряженность вносится пробный заряд и определяется направления векторов и, которые направлены в одну сторону, затем складываем их по правилу сложения однонаправленных коллениарных векторов

б) в произвольной точке В, на лежащей на оси диполя:

С помощью силовых линий электрическое поле диполя изображается

Потенциал. Разность потенциалов.

Напоминаю, что это энергетические характеристики электрического поля.

Потенциал электрического поля в любой его точке определяется как

.

и равен потенциальной энергии единичного заряда, внесенного в данную точку поля.

Если заряд переместить в поле из точки 1 в точку 2, то между этими точками возникает разность потенциалов

.

Смысл разности потенциалов: это работа электрического поля по перемещению заряда из одной точки в другую.

Потенциал поля также можно интерпретировать через работую Если т.2 находится в бесконечности, где поля нет (), то- это работа поля по перемещению заряда из данной точки в бесконечность. Потенциал поля, созданного одиночным зарядом рассчитывается как.

Поверхности, в каждой точке которой потенциалы поля одинаковы, называются эквипотенциальными поверхностями. В поле диполя потенциальные поверхности распределены следующим образом:

Потенциал поля, образованного несколькими зарядами, рассчитывается по принципу суперпозиции: .

а) Расчет потенциала в т. А, расположенной не на оси диполя:

найдем из треугольника (). Очевидно,. Поэтомуи.

.

б) Между точками А и В, равноотстоящими от диполя на расстоянии

() разность потенциалов определяется как (примем без доказательства, которое Вы найдете в учебнике Ремизова)

.

в) Можно показать, что если диполь находится в центре равностороннего треугольника, то разность потенциалов между вершинами треугольника соотносятся как проекции вектора на стороны этого треугольника ().

Диполь в электрическом поле.

а) В однородном поле напряженности .

На каждый заряд диполя действует сила, соответственно

.

Модули этих сил равны, , но направлены эти силы в противоположные стороны, и, следовательно, создают вращающий момент пары сил

,

а это выражение есть векторное произведение

.

Т.о. в однородном электрическом поле на диполь действует момент сил, который стремится установить диполь вдоль силовых линий поля. Величина этого момента зависит как от - характеристики диполя, так и от- характеристики поля, а также от ориентации диполя.

б) В неоднородном поле.

Если диполь расположен на силовой линии, то на его заряды действуют неравные силы:

.

Здесь - напряженность поля в окрестности положительного заряда,- напряженность поля в окрестности отрицательного заряда. По густоте силовых линий видим, что, т.к поде неоднородно.

Равнодействующая сил, действующих на диполь, есть

На протяженности диполя мерой неоднородности поля служит величина - среднее изменение напряженности, приходящееся на единицу длины диполя.

- мера неоднородности поля вдоль соответствующего направления поля. Откуда. Следовательно,

,

т.е. зависит от величины- характеристики диполя, так и от градиента- характеристики поля. Под действием силыдиполь втягивается в область большей напряженности поля.

Если диполь находится не на силовой линии, то он и вращается, и втягивается в область больших значений напряженности поля.

Токовый диполь. Эквивалентный электрический генератор.

Рассмотренный нами диполь может сохраняться сколь угодно долго только в вакууме или идеальном диэлектрике. Однако нас диполь интересует в применении к объяснению электрических явлений в организме – электропроводящей среде. В такой среде диполь не сохраняется, т.к. свободные заряды среды, притягиваясь к противоположно заряженным полюсам диполя, либо экранируют его, либо нейтрализуют.

Т.к. электрическое поле, образующееся в организме, не исчезает в процессе жизнедеятельности, то необходима иная модель диполя. Можно представить его как электрический генератор с э.д.с. . Если использовать его в цепи, то для этой цепи закон Ома записывается как,

то сила тока зависит, от внешнего сопротивления цепи . Создавая модель диполя как источника электрического поля, мы должны исключить внешнее сопротивление. Примем, к клеммам источника диполь, или, иначе, клеммы источника будем рассматривать как полюса диполя, который в электропроводящей среде будет сохраняться до тех пор, пока функционирует источник тока.

Отрицательный полюс назовем истоком тока, положительный – стоком тока.

Такую модель диполя называют токовым диполем.

Для токового диполя , следовательно, сила тока не зависит от сопротивления среды, в которой он находится

.

Дипольный момент токового диполя

,

где - плечо диполя, по модулю этот вектор равен расстоянии. Между стоком и истоком тока.

Потенциал поля токового диполя аналогичен потенциалу электростатического диполя, но электрические свойства среды в формуле заменяются на её электропроводящие свойства

,

удельная электропроводность среды.

Суперпозиция токовых диполей называется эквивалентным электрическим генератором.

Электрокардиография

Итак, при функционировании органов и тканей, а также клеток в организме возникает электрическое поле, элементарным источником которого является диполь. Мы показали, что характеристики этого поля можно рассчитать, а это значит, что их можно измерить.

Метод регистрации разности потенциалов называют электрографией. В принципе он прост: достаточно двух электродов, накладываемых на пациента, гальванометра и усилителя. В зависимости от того, на каких органах регистрируется разность потенциалов электрографию классифицируют на ЭКГ – регистрация разности потенциалов при сокращении сердца; ЭЭГ – электроэнцефалография- регистрируется активность мозга; ЭМГ- регисрация активности мышц.

Мы рассмотрим электрокардиографию как наиболее распространенный метод.

За цикл работы сердца возбуждение распространяется по различным отделам его нервно-мышечного аппарата с определенной последовательностью, поэтому мгновенные значения результирующей разности потенциалов за цикл работы изменяется как по величине, так и по расположению точек, между которыми они имеют наибольшее значение. Из этих значений наибольшей является разность потенциалов между основанием и верхушкой сердца в направлении электрической оси.

:

Кривая зависимости разности потенциалов от времени за время одного кардиоцикла называется электрокардиограммой

В основу электрокардиографии положена теория Эйнтховена:

1. сердце моделируется как источник разности потенциалов в виде токового диполя (эквивалентный электрический генератор);

2. диполь находится в однородной электропроводящей среде;

3. дипольный момент сердца образуется суперпозицией дипольных моментов элементарных токовых диполе, которые во множестве имеются в возбужденном миакарде сердца

и называется интегральным дипольным вектором сердца (интеградьным дипольным моментом сердца)

Проекции эквипотенциальных поверхностей диполя на фронтальную поверхность тела показаны на рисунке штриховыми линиями;

дипольный момент сердца располагается во фронтальной плоскости тела;

5. точку приложения дипольного момента сердца можно считать постоянной – это нервный узел межпредсердной перегородки.

6. Связь между интегральным дипольным моментом и разностью

потенциалов определяется исходя из наших прежних рассмотрений: .

При таком расположении вектора , как показано на нашем рисунке, разность потенциалов наибольшая в направлении электрической оси между верхушкой и основанием сердца. На ЭКГ она соответствует зубцу.

Метод отведений Эйнтховена

Эйнтховен предложил при проведении электрокардиографии измерять разность потенциалов между каждыми двумя вершинами равностороннего треугольника, построенного симметрично относительно тела человека, а центр теугольника совпадает с точкой интегрального электрического вектора сердца. Вершины этого треугольника лежат на левом предплечье (ЛР), правом предплечье (ПР) и левой ноге (ЛН). На каждые две точки накладываются по электроду, и между ними измеряется разность потенциалов. Каждые две точки наложения электродов называются стандартными отведениями.

Отведения:

I– ЛР-ПР;

II– ЛН-ПР;

III- ЛН-ЛР.

Разности потенциалов между каждыми двумя точками пропорциональны проекциям дипольного момента на линию, соединяющую соответствующие точки:

Вектор-электрокардиография.

Точку приложения вектора можно считать постоянной (точка, совпадающая с нервным узлом межпредсердной перегородки), а конец вектораза цикл работы описывает сложную пространственную кривую. С помощью осциллографа, используя его усилители, можно наблюдать проекции этой пространственной кривой на фронтальную, горизонтальную и сагиттальную плоскости, совмещенные с телом обследуемого.

В плоскости при этом наблюдаются петли , образованные сложением взаимноперпендикулярных колебаний мгновенных значений ЭКГ в двух каких-либо отведениях (фигуры Лиссажу)

Этот метод называется вектор-электрокардтографией, а полученная кривая вектор- электрокардиограммой (ВЭКГ). Вектор-электрокардиограмма - кривая, показывающая геометрическое место точек, соответствующих положению конца вектора за время одного цикла.

Блок-схема осциллографа.

Электрокардиограмма регистрируется на приборе, называемом электрокардиографом. Он содержит следующие основные блоки:

Лекция 10

ЭЛЕКТРОДИНАМИКА

Электрические колебания.

Процессы, происходящие в идеальном

колебательном контуре.

Электромагнитные колебанияколебания величин заряда, силы тока, напряжения, эдс индукции.

Электромагнитные колебания создаются в закрытом колебательном контуре, который представляет собой электрическую цепь, содержащую катушку индуктивности и конденсатор.

Мы начнем с изучения свободных (собственных) колебаний, т.е. колебаний, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.

Рассмотрим идеальный колебательный контур, т.е. контур, в котором активное сопротивление (сопротивление проводов катушки) равно нулю.

Если переведем ключ в положение 1 , то конденсатор зарядится от источника тока так, что на его пластинах накопится максимальный заряд (на одной пластине +, на другой-).Перебросим ключ в положение 2 и? будем считать, что с этого момента времени рассматриваем процессы, происходящие в контуре.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]