Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
6b44232ea3c7ad1c789fb9eb9d3ca804.doc
Скачиваний:
312
Добавлен:
23.03.2016
Размер:
3.87 Mб
Скачать

Лекция №4

II. Рудничная аэромеханника

3. Основные законы рудничной аэродинамики

3.1 Виды давления в движущемся воздухе. Понятие о депрессии

Любой движущийся объем воздуха всегда испытывает давление вышележащих слоев воздуха. Это давление называется аэростатическим (статическим) и является первой составной частью полного давления движущегося воздуха.

Движущийся воздух обладает кинетической энергией и в случае встречи, с какой либо преградой оказывает на преграду давление, величина которого зависит от кинетической энергии тела. Это давление называется динамическим или скоростным и является второй составной частью полного давления движущегося воздуха. Кинетическая энергия единицы объема движущегося воздуха определяется по формуле

Рд=(3.1)

где γ-объемный вес воздуха, кг/м3;

v-скорость движения воздуха, м/с.

Таким образом, полное давление равно сумме статического и динамического давлений. Для движущегося воздуха справедлив закон Паскаля, согласно которому статическое давление действует на все плоскости в потоке, включая стенки выработки и, направлено нормально к ним. В тоже время динамическое давление действует лишь на те поверхности, на которые происходит набегание потока.

Давление на пластинку бесконечно малой толщины, расположенную перпендикулярно направлению движения воздуха (рис.3.1) определится по формуле

[(Рстдин)-Рст]*S=Рдин*Sм(3.2)

где Sм-Миделево сечение тела, м2

Рис.3.1 Схема к пояснению статического, динамического и полного давления в воздушном потоке

Давление на такую же пластинку, помещенную в поток параллельно направлению его движения, будет равно нулю.

Полная энергия единицы объема воздушного потока равна сумме его потенциальной и кинетической энергии. Так как потенциальная энергия потока характеризуется его статическим давлением, кинетическая – динамическим давлением, то полное давление равно

Р=Рстдин(3.3)

Возьмем в выработке переменного сечения две точки 1, 2 (рис.2.2).

Рис.3.2 Схема к пояснению понятия депрессии

Допустим, что воздух движется от точки 1 к точке 2. Это будет соблюдаться только в том случае, если давление в точке 1 будет больше давления в точке 2.

Полное давление в точке 1 будет равно:

Рп.1ст.1дин.1; (3.4)

а в точке

п.2ст.2дин.2 (3.5)

Разность давления в тачках 1, 2 называется депрессией и обозначается через h, H.

Разность статических давлений называется статической депрессией (hст)

hстст.1ст.2 (3.6)

Разность динамических давлений - скоростной депрессией или скоростным напором (hск)

hскдин.1дин.2 (3.7)

Разность полных давлений - полной депрессией (hп)

hпп.1п.2(3.8)

3.2 Измерение давления и депрессии в движущемся потоке

Для этой цели используются приемники давления и измерители и линии связи (трубки). В качестве приемников давления используются воздухомерные трубки различной конструкции. Наиболее распространенной из них является трубка Пито-Прандля, схема которой представлена на рис.3.3

В этой трубке приемником статического давления служит кольцевая щель или 4-6 отверстий 1 диаметром 0.1d , расположенных по периметру трубки, а приемником полного напора - осевое отверстие 2.

Рис.3.3 Схема воздухомерной трубки

Измерителями давления служат жидкостные манометры и микроманометры. В рудничной вентиляции широкое распространение получили микроманометры типа ММН, схема которого представлена на рис.3.4

Рис.3.4 Схема микроманометра

Жидкостный микроманометр, изображенный на рис.3.4, состоит из двух колен, одно из которых имеет изменяемый в определенных пределах наклон и значительно меньший диаметр. Как видно из рис.3.4, к широкому сосуду подведено большее давление, а меньшее - к подвижной измерительной трубке малого диаметра.

Обозначим площадь измерительной трубки f , а поперечное сечение сосуда - через F. Под действием разности давлений ∆Р=Р12=hγж(где Р1> Р2и γж- удельный вес жидкости) уровень жидкости в трубке повысится на величину а от нулевого положения, а в широком сосуде – опустится на величину h0от начального нулевого положения, при этом объем жидкости равный h0*F, перетечет в трубку и будет равен объему а*f, т.е.

h0*F= а*f (3.9)

Разность уровней в коленах будет равна

h=h0+ h1 (3.10)

где h0-вертикальная высота опускания жидкости в широком сосуде;

h1-вертикальная высота подъема жидкости в измерительной трубке.

Но h1=а*Sinα (3.11)

и h0=а*f/F (3.12)

Подставив вместо h1и h0их значения в предыдущее уравнение, получим

h=a(Sinα +(3.13)

Следовательно, искомая разность давлений

∆Р= γж h=a (Sinα + γж (3.14)

Отсюда видно, что увеличение «масштаба» измерения есть отношение отсчитываемой на шкале прибора величины к вертикальной высоте столба жидкости, h уравновешивающей измеряемую разность давлений,

(3.15)

Чувствительность прибора будет тем больше, чем меньше отношение f/F и чем меньше угол наклона α. В микроманометрах типа ММН-240 f/F=1/400, Sinα=0,2-0,8, а диаметр трубки 2 мм.