Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпора.docx
Скачиваний:
318
Добавлен:
27.03.2016
Размер:
951 Кб
Скачать

64.Общая характеристика физико-химических измерений.

В основе всех методов анализа лежит измерение либо химического, либо физического свойства вещества, называемого аналитическим сигналом, зависящего от природы вещества и его содержания в пробе.

Все методы анализа принято разделять на химические, физические и физико - химические методы анализа.

В химических методах анализа для получения аналитического сигнала используется химическая реакция. В качестве аналитического сигнала в химических методах выступает либо масса вещества (гравиметрический метод анализа), либо объем реактива - титранта (титриметрические методы).

Физико - химические методы анализа основаны на регистрации аналитического сигнала какого-то физического свойства (потенциала, тока, количества электричества, интенсивности излучения света или его поглощения и т. д.) при проведении химической реакции.

Физические методы - методы, при реализации которых регистрируется аналитический сигнал каких-то физических свойств (ядерные, спектральные, оптические) без проведения химической реакции.

Деление методов на физические и физико - химические часто условно, так как бывает трудно отнести метод к той или иной группе. Физические и физико - химические методы называют еще инструментальными методами анализа, поскольку они требуют использования специальной аппаратуры. Кроме того, деление методов на химические и инструментальные осуществляют на основе типа взаимодействия: в химических методах - взаимодействие вещества с веществом, в инструментальных - вещества с энергией. В зависимости от вида энергии в веществе происходит изменение энергетического состояния составляющих его частиц (атомов, молекул, ионов); при этом меняется физическое свойство, которое может быть использовано в качестве аналитического сигнала.

В последнее время в отдельную группу методов анализа выделяют так называемые биологические методы, в которых для получения аналитического сигнала используются реакции, протекающие в живых организмах или с участием выделенных из них биологических субстратов (ферментов, антител и др.).

Наличие в литературе многочисленных классификаций объясняется различными принципами, положенными в основу деления методов анализа:

  • объект анализа (неорганические и органические вещества);

  • агрегатное состояние вещества (газы, твердые тела, жидкие среды и т. д.);

  • масса пробы, используемая для анализа (макро- и микроанализ);

  • диапазон содержаний определяемого компонента;

  • эксплуатационные характеристики метода (например, продолжительность анализа, степень автоматизации, метрологические характеристики и т. д.);

  • избирательность (селективность);

  • прочие аналитические признаки (например, кинетические методы, методы капельного анализа).

Иногда при решении специальных задач возникает потребность еще более детальной классификации.

Широкое распространение физико - химические методы анализа получили благодаря следующим достоинствам:

- высокая чувствительность и низкий предел обнаружения (10 -5 10 -10 %); - экспрессность; - возможность проведения анализа на расстоянии - дистанционный анализ (анализ глубинных океанических вод, изучение объектов Вселенной, анализ агрессивных и токсичных сред и т.д.); - выполнение анализа без разрушения образца, послойный и локальный анализ (металловедение, полупроводниковая промышленность); - возможность полной или частичной автоматизации. Уступая химическим методам в точности ( погрешность 10 - 15 %), физико - химические методы тем не менее имеют широкие возможности для решения сложных, многообразных задач современной аналитической химии.

Под физико-химическими измерениями в системе Росстандарта РФ принято понимать все измерения, связанные с контролем состава веществ, материалов и изделий. Измерения химического состава веществ могут проводиться самими различными методами, поскольку в измерительном процессе в большинстве случаев измеряется какое-либо свойство материала, а затем состав находят из связи состав-свойство. Таким свойством могут быть механические свойства, электромеханические, тепловые, оптические. Из этого следует, что физико-химические измерения опираются в сути своей на уже рассмотренные виды измерений.

Основной отличительной особенностью физико-химических измерений является важная роль процесса подготовки пробы к анализу. В самом деле, при хранении пробы, при ее транспортировке от места забора к аналитическому прибору и в самом процессе анализа возможны самые разнообразные трансформации состава. К таким трансформациям могут привести изменения температурного режима, изменения влажности, давления. Важным моментом является так называемое влияние третьей компоненты на результат анализа. В химии хорошо известен каталитический эффект - т. е. влияние на скорость химических реакций веществ, не участвующих в химических превращениях, но изменяющих скорость их протекания, а в ряде случаев определяющих конечный результат химической реакции.

По этой причине нельзя отождествлять, например, собственно измерения теплопроводности газов и анализ состава газовых смесей на хроматографе с детектором теплопроводности. То же самое относится к другому распространенному виду физико-химических измерений - масс-спектрометрам. Эти приборы являются средством измерения массы по траектории движения ионов различной массы в магнитном поле.

Указанная особенность физико-химических измерений приводит к двум очень важным моментам. Первое - физико-химические измерения в сути своей используют весь арсенал приборов и методов из других видов измерения. И второе - в физико-химических измерениях очень большое значение имеет стандартизация методики измерений - последовательности действий, включая забор пробы, хранение, транспортировку, подготовку пробы к анализу, получение аналитического сигнала и обработку результатов измерений. В ряде случаев необходимая информация о составе вещества может быть получена только с использованием измерения нескольких свойств, например, массы и теплопроводности или массы и показателя преломления.

Характерным примером важности процесса пробоподготовки в аналитических измерениях является хроматография. Ниже мы рассмотрим более подробно основные принципы создания хроматографов. Здесь укажем, что в измерительной технике хроматографы занимают достойное место среди других приборов. Тем не менее хроматография не является методом измерения, а скорее есть способ пробоподготовки, позволяющий транспортировать к измерительному устройству различные компоненты смесей веществ в разные моменты времени. В зависимости от типа детектора хроматограф может быть механическим, тепловым, электроизмерительным или оптическим прибором.

Возможность определять состав веществ и материалов по различным свойствам отражается на методах оценки систематических погрешностей. В самом деле, использование различных уравнений измерения для определения одной и той же величины, например концентрации какого-либо компонента в смеси газов, жидкостей или твердых тел позволяет с большей степенью достоверности определять состав вещества.

Все аналитические методы можно разделить по способу подготовки пробы на два класса - элементный анализ, в котором определяется состав вещества по элементам периодической системы, и анализ по компонентам, в котором измеряемые составляющие вещества ни во время подготовки пробы, ни в процессе анализа на элементы не разлагаются.

По физическим свойствам анализируемой среды физико-химические измерения делятся на анализ состава газов, анализ состава жидкостей и анализ состава твердых тел. Особое место в та ком подходе занимает гигрометрия -определение содержания воды в газах в виде паров, в жидкостях в виде капельной влаги и в твердых телах в виде кристаллизационной воды.

Еще одной отличительной особенностью физико-химических измерений является разнообразие методов и приборов для определения микроконцентраций и макроконцентраций одного и того же компонента в определенной среде. Под этим термином здесь подразумевается, что в зависимости от относительного содержания компонента в смеси нужно использовать в ряде случаев совершенно разные подходы. По грубым оценкам в газе в 1 см3 содержится приблизительно 2,6×1019 частиц. В жидкости и в твердом теле это значение на несколько порядков больше. Соответственно, для решения всевозможных задач измерения содержания определенного вещества во всевозможных смесях необходимо иметь прибор для измерения величин, изменяющихся в 1019-1023 раз. Для большинства компонентов эта задача трудноразрешима. В самом деле для реализации такого анализатора необходимо с одной стороны иметь счетчик отдельных частиц, а с другой стороны иметь средство измерения сверхчистого вещества с уровнем примесей 10-19яю&10-23. Очевидно, что подобные измерения представляют собой совершенно разные задачи и решать их если и возможно, то с использованием совершенно разных подходов. Тем не менее, практическая необходимость создания сверхчистых материалов привела к тому, что для ряда конкретных задач подобные методы и приборы были созданы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]