Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы финансовых вычислений_Учебное пособие.doc
Скачиваний:
133
Добавлен:
28.03.2016
Размер:
315.9 Кб
Скачать

2.4. Непрерывные проценты

В практических финансово-кредитных операциях непрерывное наращение, т.е. наращение за бесконечно малые отрезки времени, применяется крайне редко. Существенно большее значение непрерывное наращение имеет в анализе сложных финансовых проблем, например, при обосновании и выборе инвестиционных решений.

Наращенная сумма при дискретных процентах определяется по формуле

S=P(1+j/m)mn,

где j – номинальная ставка процентов, а m – число периодов начисления процентов в году.

Чем больше m, тем меньше промежутки времени между моментами начисления процентов. Увеличение частоты начисления процентов (m) при фиксированном значении номинальной процентной ставки j приводит к росту множителя наращения, который при непрерывном начислении процентов (m) достигает своего предельного значения

(2.5)

Известно, что

,

где е – основание натуральных логарифмов.

Используя этот предел в выражении (2.5), окончательно получаем, что наращенная сумма по ставке j равна

S=Pejn.

Непрерывную ставку процентов называют силой роста и обозначают символом . Тогда

S=Pen. (2.6)

Сила роста представляет собой номинальную ставку процентов при m.

Закон наращения при непрерывном начислении процентов (2.6) совпадает по форме с (2.2) с той разницей, что в (2.2) время изменяется дискретно с шагом 1/m, а в (2.6) – непрерывно.

Легко показать, что дискретные и непрерывные ставки наращения находятся в функциональной зависимости. Из равенства множителей наращения можно получить формулу эквивалентного перехода от одних ставок к другим:

(1+i)n=en,

откуда следует:

=ln(1+i), i=e-1.

Пример 20. Сумма, на которую начисляются непрерывные проценты в течение 5 лет, равна 2000 ден. ед., сила роста 10%. Наращенная сумма составит S=2000·e0,1·5=2000·1,6487=3297,44 ден. ед.

Непрерывное наращение по ставке 10% равнозначно наращению за тот же срок сложных дискретных процентов по годовой ставке i. Находим:

i=e0,1-1=1,10517-1=0,10517.

В итоге получим S=2000·(1+0,10517)5=3297,44 ден. ед.

Дисконтирование на основе силы роста осуществляется по формуле

P=Se-n

Пример 21. Определим современную стоимость платежа из примера 17 при условии, что дисконтирование производится по силе роста 15%.

Решение. Полученная за долг сумма (современная величина) равна

P=5000·е-0,15·5=5000·0,472366=2361,83 ден. ед.

При применении дискретной сложной учетной ставки такого же размера получили величину (см. пример 17) P=2218,53 ден. ед.

2.5. Расчет срока ссуды и размера процентных ставок

В ряде практических задач начальная (P) и конечная (S) суммы заданы контрактом, и требуется определить либо срок платежа, либо процентную ставку, которая в данном случае может служить мерой сравнения с рыночными показателями и характеристикой доходности операции для кредитора. Указанные величины нетрудно найти из исходных формул наращения и дисконтирования (для простых процентов эти задачи рассмотрены в п. 1.8.).

Срок ссуды. Рассмотрим задачу расчета n для различных условий наращения процентов и дисконтирования.

При наращении по сложной годовой ставке i из исходной формулы наращения (2.1) следует, что

,

где логарифм можно взять по любому основанию, поскольку он имеется и в числителе, и в знаменателе.

При наращении по номинальной ставке процентов j m раз в году из формулы (2.2) получаем:

.

При дисконтировании по сложной годовой учетной ставке d и по номинальной учетной ставке f m раз в году из формул (2.3) и (2.4) соответственно получаем:

;

.

При наращении по постоянной силе роста, исходя из формулы (2.6) получаем:

.

Пример 22. За какой срок в годах сумма, равная 75 тыс. ден. ед., достигнет 200 тыс. ден. ед. при начислении процентов по сложной ставке 12% раз в году и поквартально?

Решение. По формулам для вычисления срока при наращении по сложным ставкам наращения получим:

n=(log(200/75)/log(1+0,12))=3,578 года;

n=(log(200/75)/(4·log(1+0,12/4))=3,429 года;

Расчет процентных ставок. Из тех же исходных формул, что и выше, получим формулы для расчета ставок при различных условиях наращения процентов и дисконтирования.

При наращении по сложной годовой ставке i из исходной формулы наращения (2.1) следует, что

i=(S/P)1/n –1=.

При наращении по номинальной ставке процентов m раз в году из формулы (2.2) получаем:

j=m((S/P)1/mn –1)=.

При дисконтировании по сложной годовой учетной ставке d и по номинальной учетной ставке f m раз в году из формул (2.3) и (2.4) соответственно получаем:

d =1– (P/S)1/n =;

f = m(1– (P/S)1/mn =.

При наращении по постоянной силе роста, исходя из формулы (2.6), получаем:

.

Пример 23. Сберегательный сертификат куплен за 100 тыс. ден. ед., его выкупная сумма – 160 тыс. ден. ед., срок 2,5 года. Каков уровень доходности инвестиции в виде годовой ставки сложных процентов?

Решение. Воспользовавшись полученной формулой для годовой ставки i, получим: i=(160/100)1/2,5–1=1,2068–1=0,20684, т.е. 20,684%.

Пример 24. Срок до погашения векселя равен 2 годам. Дисконт при его учете составил 30%. Какой сложной годовой учетной ставке соответствует этот дисконт?

Решение. По данным задачи P/S=0,7. Тогда d=1–=0,16334, т.е. 16,334%.