Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика зачёт / 26_05_12_fiika_zachet.docx
Скачиваний:
37
Добавлен:
18.06.2017
Размер:
217.88 Кб
Скачать

Оптическая плотность Назначение

Методика предназначена для измерения на изображениях оптических параметров объектов – средней яркости, отклонения яркости, минимальной яркости, максимальной яркости, интервала яркости, интегральной яркости, средней и интегральной оптической плотности.

По способу расчета оптической плотности методика представлена в трех модификациях:

•  Расчет оптической плотности производится относительно фона, который указывается на изображении вручную с помощью «мыши»;

•  Оптическая плотность рассчитывается с учетом темнового поля камеры и поля, чистого стекла препарата.

•  Перед измерениями производится калибровка системы по эталонам с известной оптической плотностью.

Методика может использоваться для гистохимических исследований.

Как работает методика

На полученном изображении по яркости автоматически выделяются объекты. Предварительно (в зависимости от выбранного способа расчета оптической плотности) указывается фон, вводятся с камеры изображения темнового поля и чистого стекла или производится оптическая калибровка системы ввода по оптическим эталонам

•  При необходимости производится  дополнительная подготовка к измерениям: удаление с изображения небольших посторонних деталей, сглаживание  границ, заполнение пустот, автоматическое разделение контактирующих объектов

•  Автоматические измерения производятся по набору параметров, характеризующих оптические свойства выделенных объектов. Пользователь также может включить необходимые дополнительные параметры (размеры, форма)

•  По результатам измерений производится классификация объектов по параметру «Оптическая плотность», строится гистограмма распределения, и рассчитываются статистические параметры выборки. Условия построения гистограммы и набор рассчитываемых параметров определяет пользователь.

2. Медицинская оптика

2.3 Ход лучей в оптическом микроскопе.Характеристики изображений.Увеличение микроскопа.Теория Аббе.Характерные величины параметров входящих в формулу увеличения и их смысл.

2.4 Основные положения теории Аббе.Предел разрешения.Разрешающая способность микроскопа.Полезное и бесполезное увеличение.Предельное увеличение биологического микроскопа.

Дифракционная теория разрешающей способности оптических приборов была разработана Аббе.Если в качестве объекта использовать дифракционную решётку,а её изображение получать с помощью линзы,то в фекальной плоскости этой линзы будет образовываться дифракционная картина в виде чередующихся максимумов и минимумов освещённости.Эта картина является первичным изображением.На некотором расстоянии от первичного будет находиться вторичное действительное,котрое и является собственно изображением решётки.Аббе установил,что для соответствия вторичного изображения рассматриваемому предмету необходимо,чтобы в его формировании принимали участие лучи,идущие от центрального и одного из первых главных максимумов.Все максимумы первичного изображения возникают в результате интерференции когерентных лучей,и поэтому могут рассматриваться как самостоятельные точечные и когерентные источники.Разрешающая способность микроскопа зависит от длины световой волны и значения аппертурного угла.Предел разрешения-наименьшее расстояние между двумя точками предмета,когда эти точки различимы,то есть воспринимаются как две точки в микроскопе.Разрешающей способностью называют способность микроскопа давть раздельные изображения мелких деталей рассматриваемого предмета.Эта величина обратно пропорциональна пределу разрешения.Полезное увеличение-увеличение,при котором глаз различает все элементы структуры объекта.Бесполезное увеличение-глаз не способен различить все элементы структуры объекта.

2.5 Иммерсионная микроскопия.Числовая апертура.Апертурный угол.Ход лучей.

Разрешающую способность микроскопа можно несколько повысить,используя объектив с иммерсией.В этом случае пространство между покровным стеклом и фронтальной линзой объектива заполняется средой с показателем преломления близким к показателю преломления покровного стекла.Объективы с иммерсией называют иммерсионными,а без неё-сухими.Хорошей иммерсионной средой является кедровое масло.Показатель преломления кедрового масла практически совпадает со значением показателя преломления стекла.Иммерсия увеличивает угол раскрытия,а значит и разрешающую способность микроскопа A=n*Sin(u/2).Обычно произведение показателя преломления на синус аппертурного угла называют числовой апертурой.

2.10 Метод тёмного поля.Ультрамикроскопия.УФ-микроскопия и её преимущества.

Обширную группу микрокопирования составляют объекты,содержащие структурные элементы размерами порядка нескольких сотен ангстрем,что существенно меньше предела разрешающей способности обычного светового микроскопа со светлым полем.Примерами могут являться пылинки в воздухе,совокупность твёрдых частиц в жидкости.Таким образом они воспринимаются как визуально,так и спомощью обычного светового микроскопа как однородные.Для обнаружения таких частиц используют обычный микроскоп,в котором осуществляется принцип тёмного поля.В основе этого метода лежит рассеивание света на ультрамалых частицах.Используют специальные конденсоры,затемнённые в центре,которые приспособлены для бокового освещения объекта.Принцип тёмного поля можно осуществить с помощью кружочка чёрной бумаги,вкладывая его между линзами обычного конденсора.Диаметр кружка должен быть такой,чтобы осталась не закрытой только незначительная перефирическая часть линзы.Таким оьразом прямые лучи устраняются,а лучи дифрагированные ультрамалыми частицами,сохраняются,что и позволяет их обнаружить.Существенный недостаток метода тёмного поля-невозможность изучения с его помощью структуры обнаруживаемых ультрамалых частиц.

2.11 Метод фазового контраста.

В настоящее время структуры неконтрастных объектов часто изучают с помощью обычного светового микроскопа,снабжённого фазовой приставкой.Этот метод,получивший название метода фазового контраста,позволяет изучить структуры неконтрастных объектов путём увеличения контраста получаемого изображения без непосредственного воздействия на сам объект.При встрече света с любой неоднородностью,в частности с бактерией,происходят два явления изменения фаз колебаний световых волн и их дифракция.Происходит воздействие на основные и добавочные волны.Для этого используются пластинки различных конструкций.Они называются фазовыми.Такие фазовые пластинки устанавливаются в фокальной плоскости объектива микроскопа,то есть практически вплотную к объективу.Сущность метода сводится к созданию контраста интенсивностей в окончательном изображении неконтрастного объекта,путём воздействия на его первичное изображение.С помощью этого метода возможно проводить наблюдение живых микроорганизмов-бактерий.

2.12 Устройство и принцип работы электронного микроскопа.Ход лучей,магнитные линзы и их строение.

Очень распространены объекты,структурные элементы которых имеют размеры несколько десятков ангстрем,что значительно меньше разрешающей способности обычного светового микроскопа.Изучение таких ультраструктур возможно с помощью электронного микроскопа,обладающего большей разрешающей способностью,чем обычный световой микроскоп.В основе использования электронного микроскопа лежит использование волновых свойств электронов и возможность их фокусировки.Любой движущейся частице,в том числе и электрону,присущи волновые свойства(преломление,отражение,дифракция и интерфернция).Для свободного движения электронов необходимо создание магнитного поля.Магнитное поле позволяет фокусировать электронные лучи и получать равные по величине электронные изображения предметов.Магнитную линзу можно сделать и увеличивающей.Для этого пользуются сильным неоднородным магнитным полем,полученного от короткого соленоида с током,имеющего большое число витков.Большим увеличением обладает панцирная магнитная линза с полюсными наконечниками.Представляет собой соленоид,находящийся внутри двух железных цилиндров,внутреннего и наружного,соединённых железными основаниями.Создаётся увеличение в 20000 раз.Электронный микроскоп состоит из оптической системы,вакуумной установки,установки электрического питания и пульта управления.Ход лучей:Источник освещения-конденсорная линза-объект микроскопического исследования-объективная линза-промежуточное изображение объекта-проекционная линза-увеличение участка промежуточного изображения.ла разработана Аббе.Если в качестве объекта использовать дифракционную решётку,а еёизображение бесполезное увеличение.Предель

Соседние файлы в папке Физика зачёт