Скачиваний:
88
Добавлен:
24.07.2017
Размер:
999.94 Кб
Скачать

Атомные ракеты малой тяги

До сих пор речь шла о ракетах с тягой, превышающей их вес, которые могли бы стартовать с поверхности Земли. В таких системах увеличение скорости истечения позволяет снизить запас рабочего тела, повысить полезную нагрузку и отказаться от многоступенчатости. Однако есть пути достижения практически неограниченных скоростей истечения, например ускорение вещества электромагнитными полями. Я занимался этим направлением в тесном контакте с Игорем Бондаренко почти 15 лет.

Ускорение ракеты с электрореактивным двигателем (ЭРД) определяется отношением удельной мощности установленной на них космической атомной электростанции (КАЭС) к скорости истечения. В обозримом будущем удельные мощности КАЭС, судя по всему, не превысят 1 кВт/кг. При этом возможно создание ракет с малой тягой, в десятки и сотни раз меньшей веса ракеты, и с очень малым расходом рабочего тела. Такая ракета может стартовать только с орбиты искусственного спутника Земли и, медленно ускоряясь, достигать больших скоростей.

Для полётов в пределах Солнечной системы нужны ракеты со скоростью истечения 50–500 км/с, а для полётов к звёздам — выходящие за пределы нашего воображения „фотонные ракеты“ со скоростью истечения, равной скорости света. Чтобы осуществить сколько-нибудь разумный по времени дальний космический полёт, необходимы невообразимые удельные мощности энергетических установок. Пока нельзя даже представить, на каких физических процессах они могут быть основаны.

Схема модели ионного движителя с пористым эмиттером: 1 - компенсирующая сетка (набор оксидных катодов); 2 - запирающая сетка (стальные трубки, охлаждаемые воздухом); 3 - эмиттер (пластинка из пористого вольфрама); 4 - подогреватель эмиттера; 5 - измеритель давления паров цезия по току поверхностной ионизации на центральную нить; 6 - игольчатый вентиль - дозатор паров цезия.

Схема термоэмиссионного электрогенерирующего канала ("гирлянды" В. А. Малыха): 1 - сердечник из окиси обогащенного урана; 2 - катод (молибден, вольфрам); 3 - анод (ниобий); 4 - вакуумный зазор с парами цезия; 5 - изоляция (окись берилия); 6 - корпус (сталь); 7 - теплоноситель (натрий-калий).

Проведенные расчёты показали, что во время Великого противостояния, когда Земля и Марс находятся ближе всего друг к другу, можно за один год осуществить полёт ядерного космического корабля с экипажем к Марсу и возвратить его на орбиту искусственного спутника Земли. Полный вес такого корабля — около 5 т (включая запас рабочего тела — цезия, равный 1,6 т). Он определяется в основном массой КАЭС мощностью 5 МВт, а реактивная тяга — двухмегаваттным пучком ионов цезия с энергией 7 килоэлектронвольт *. Корабль стартует с орбиты искусственного спутника Земли, выходит на орбиту спутника Марса, а спускаться на его поверхность придётся уже на аппарате с водородным химическим двигателем, подобным американскому лунному.

Этому направлению, основанному на технических решениях, возможных уже сегодня, был посвящён большой цикл работ ФЭИ.

Ионные движители

В те годы обсуждались пути создания различных электрореактивных движителей для космических аппаратов, таких, как „плазменные пушки“, электростатические ускорители „пыли“ или капель жидкости. Однако ни одна из идей не имела под собой чёткой физической основы. Находкой оказалась поверхностная ионизация цезия.

Ещё в 20-е годы прошлого века американский физик Ирвинг Лэнгмюр открыл поверхностную ионизацию щелочных металлов. При испарении атома цезия с поверхности металла (в нашем случае — вольфрама), у которого работа выхода электронов больше потенциала ионизации цезия, он практически в 100% случаев теряет слабо связанный электрон и оказывается однократно заряженным ионом. Таким образом, поверхностная ионизация цезия на вольфраме и есть тот физический процесс, который позволяет создать ионный движитель с почти 100-процентным использованием рабочего тела и с энергетическим КПД, близким к единице.

Большую роль в создании моделей ионного движителя такой схемы сыграл наш коллега Сталь Яковлевич Лебедев. Своим железным упорством и настойчивостью он преодолевал все преграды. В результате удалось воспроизвести в металле плоскую трёхэлектродную схему ионного движителя. Первый электрод — пластина вольфрама размером примерно 10×10 см с потенциалом +7 кВ, второй — сетка из вольфрама с потенциалом -3 кВ, третий — сетка из торированного вольфрама с нулевым потенциалом. „Молекулярная пушка“ давала пучок паров цезия, который сквозь все сетки попадал на поверхность вольфрамовой пластины. Уравновешенная и откалиброванная металлическая пластина, так называемые весы, служила для измерения „силы“, т. е. тяги ионного пучка.

Ускоряющее напряжение до первой сетки разгоняет ионы цезия до 10 000 эВ, тормозящее напряжение до второй замедляет их до 7000 эВ. Это та энергия, с которой ионы должны покидать движитель, что соответствует скорости истечения 100 км/с. Но пучок ионов, ограниченный объёмным зарядом, не может „выйти в открытый космос“. Объёмный заряд ионов необходимо скомпенсировать электронами, чтобы образовалась квазинейтральная плазма, которая беспрепятственно распространяется в пространстве и создаёт реактивную тягу. Источником электронов для компенсации объёмного заряда ионного пучка служит нагреваемая током третья сетка (катод). Вторая, „запирающая“ сетка не даёт электронам попасть с катода на вольфрамовую пластину.

Первый опыт с моделью ионного движителя положил начало более чем десятилетним работам. Одна из последних моделей — с пористым вольфрамовым эмиттером, созданная в 1965 году, давала „тягу“ около 20 г при токе ионного пучка 20 А, имела коэффициент использования энергии около 90% и вещества — 95%.

Соседние файлы в папке _не мой реферат