Скачиваний:
88
Добавлен:
24.07.2017
Размер:
999.94 Кб
Скачать

Прямое преобразование ядерного тепла в электричество

Пути прямого преобразования энергии ядерного деления в электрическую пока не найдены. Мы ещё не можем обойтись без промежуточного звена — тепловой машины. Поскольку её КПД всегда меньше единицы, „отработанное“ тепло нужно куда-то девать. На земле, в воде и в воздухе с этим проблем нет. В космосе же существует только один путь — тепловое излучение. Таким образом, КАЭС не может обойтись без „холодильника-излучателя“. Плотность же излучения пропорциональна четвёртой степени абсолютной температуры, поэтому температура холодильника-излучателя должна быть как можно более высокой. Тогда удастся сократить площадь излучающей поверхности и соответственно массу энергетической установки. У нас появилась идея использовать „прямое“ преобразование ядерного тепла в электричество, без турбины и генератора, что казалось более надёжным при длительной работе в области высоких температур.

Организатор и первый директор Физико-технического института Абрам Федорович Иоффе. 1952 год.

Из литературы мы знали о работах А.Ф. Иоффе основателя советской школы технической физики, пионера в исследовании полупроводников в СССР. Мало кто теперь помнит о разработанных им источниках тока, применявшихся в годы Великой Отечественной войны. Тогда не один партизанский отряд имел связь с Большой землёй благодаря „керосиновым“ ТЭГам — термоэлектрогенераторам Иоффе. „Венец“ из ТЭГов (он представлял собой набор полупроводниковых элементов) надевался на керосиновую лампу, а его провода подсоединялись к радиоаппаратуре. „Горячие“ концы элементов нагревались пламенем керосиновой лампы, „холодные“ — остывали на воздухе. Поток тепла, проходя через полупроводник, порождал электродвижущую силу, которой хватало для сеанса связи, а в промежутках между ними ТЭГ заряжал аккумулятор. Когда через десять лет после Победы мы побывали на московском заводе ТЭГов, оказалось, что они ещё находят сбыт. У многих деревенских жителей были тогда экономичные радиоприемники „Родина“ на лампах прямого накала, работающие от батареи. Вместо них зачастую использовали ТЭГи.

Беда керосинового ТЭГа — его низкий КПД (всего около 3,5%) и невысокая предельная температура (350°К). Но простота и надёжность этих приборов привлекали разработчиков. Так, полупроводниковые преобразователи, разработанные группой И.Г. Гвердцители в Сухумском физико-техническом институте, нашли применение в космических установках типа „Бук“.

В свое время А.Ф. Иоффе предложил ещё один термоэмиссионный преобразователь — диод в вакууме. Принцип его действия следующий: нагретый катод испускает электроны, часть их, преодолевающая потенциал анода, совершает работу. От этого прибора ожидали значительно большего КПД (20–25%) при рабочей температуре выше 1000°К. Кроме того, в отличие от полупроводника вакуумный диод не боится нейтронного излучения, и его можно совместить с ядерным реактором. Однако оказалось, что осуществить идею „вакуумного“ преобразователя Иоффе невозможно. Как и в ионном движителе, в вакуумном преобразователе нужно избавиться от объёмного заряда, но на этот раз не ионов, а электронов. А.Ф. Иоффе предполагал использовать в вакуумном преобразователе микронные зазоры между катодом и анодом, что в условиях высоких температур и термических деформаций практически невозможно. Вот тут-то и пригодился цезий: один ион цезия, полученный за счёт поверхностной ионизации на катоде, компенсирует объёмный заряд около 500 электронов! По сути дела, цезиевый преобразователь — это „обращённый“ ионный движитель. Физические процессы в них близки.

Ядерно-энергетическая установка "Бук" с

полупроводниковым реактором-преобразователем для

радиолокационных спутников

Ядерно-энергетическая термоэмиссионная установка "Топаз".

ТЕРМОЭМИССИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ

Имя изобретателя: Прилежаева И.Н.; Бологов П.М.

Имя патентообладателя: Государственный научный центр - Физико-энергетический институт

Адрес для переписки:

Дата начала действия патента: 1996.09.18

Назначение: термоэмиссионное преобразование тепловой энергии в электрическую. Сущность изобретения: в термоэмиссионном преобразователе, содержащем многослойные электроды, как минимум один слой выполнен из дырочного полупроводника, который расположен на поверхности эмиттера, обращенного к коллектору, или на поверхности коллектора, обращенного к эмиттеру. Технический результат: снижение работы выхода электронов на коллекторе, снижение эмиссии электронов с поверхности коллектора, возможность выбора дырочного полупроводника для разного уровня, стабильного в условиях работы преобразователя.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к области энергетики, электроники.

Термоэмиссионные преобразователи (ТЭП) тепла в электроэнергию [2] имеют преимущества перед другими преобразователями в отсутствии движущихся частей и в высокой температуре теплосброса. Эти достоинства привели к использованию ядерных энергетических установок с преобразователем на основе ТЭП в космосе на спутниках Космос-1818 и Космос-1867 в конце 80-х гг. В наземных условиях допустимо использование низкой температуры охлаждения анода и требуется более высокий КПД. Основными путями повышения КПД ТЭП при заданном интервале температур является снижение потерь энергии эмитированных электронов на пути между эмиттером и коллектором и снижение работы выхода на коллекторе [2] Сумма этих потерь превышает обычно 2В при рабочем напряжении ТЭП 0,5В. Пока разработчики ТЭП используют только 1/5 энергии эмитированного электрона. НИР по снижению потерь энергии эмитированного электрона ведутся непрерывно, но снизить работу выхода коллектора ниже 1,7 эВ для ТЭП энергоустановок не удалось. Базовым решением является применение в ТЭП цезия, который образует в межэлектродном зазоре ТЭП плазму, чем компенсирует запирающий объемный заряд эмитированных электронов, сорбируется на эмиттере и коллекторе, что позволяет поддерживать работу выхода эмиттера и коллектора в пределах получения энергии с КПД около 10%

В качестве аналога укажем решения по регулированию переходов металл -полупроводник методом легирования тонких слоев [1] Таким методами удается снизить до нуля энергетический барьер между слоями полупроводника и металлом основы эмиттера и коллектора.

В качестве прототипа предлагаемому решению укажем на ТЭП с коллектором на основе ниобия, насыщенным в поверхностном слое кислородом до 1% Сорбция цезия на таком коллекторе проходит в значимой мере через кислород, что понижает работу выхода коллектора до 1,4 эВ и соответственно повышает КПД [2,с. 54] Недостатком прототипа является неустойчивость состава коллектора из-за перехода кислорода в другие фазы. Поэтому промышленного применения это решение не нашло.

Предлагаемое решение позволяет снизить работу выхода коллектора введением тонкого полупроводникового слоя, устойчивого в условиях работы ТЭП. Применение полупроводниковых слоев [1] позволяет регулировать работу выхода в широких пределах и обеспечит малые электрические потери при протекании тока по направлению нормали к слою полупроводника. Тонкий слой полупроводника должен обладать стабильностью в условиях работы и иметь химическое сродство к электронам.

На чертеже изображена схема предлагаемого ТЭП. К эмиттеру 1 подводят поток тепла Q, который частично преобразуют в электроэнергию. Непреобразованное тепло с коллектора 4 сбрасывают на холодильник. На эмиттере 1 размещен тонкий слой 2 дырочного полупроводника для оптимизации работы выхода электронов для принятых условий работы ТЭП. На коллекторе 4 размещен тонкий слой дырочного полупроводника 3 для оптимизации работы выхода электронов для принятых условий работы ТЭП. Возможны условия, когда дырочный полупроводник размещают только на одной из эмиссионных поверхностей. ТЭП работает в парах цезия или в вакууме (при условии поддержания микрозазора между эмиттером и коллектором). Полупроводник выбирается с дырочной проводимостью, что исключает короткое замыкание током электронов эмиттера с коллектором при их случайном касании. На слоях дырочного полупроводника коллектора сорбируются монослои цезия и перенесенной массы с эмиттера, которые не должны превышать толщину слоя Дебая (толщина экранирования полупроводника проводником) [4] Предлагаемая конструкция коллектора снижает работу выхода до полуразности работ выхода полупроводника и работы выхода слоя металла, сорбированного на поверхности полупроводника. Из-за обедненности электронами поверхности коллектора снижается паразитная вторичная эмиссия электронов с коллектора, что повышает КПД. Для космических ТЭП с ядерным нагревом эмиттер выполняют для температуры 2000 K из вольфрама, у которого работа выхода 4,5-5 эВ обеспечивает хорошую сорбцию цезия. Для наземных ТЭП вольфрам дефицитен, дорог. Поэтому могут быть применены покрытия эмиттера дырочным полупроводником, обеспечивающим достаточную сорбцию цезия.

Преимуществами предлагаемого ТЭП перед известными являются:

снижение работы выхода электронов на коллекторе,

возможность выбора дырочного полупроводника, стабильного в условиях ТЭП, для разного уровня температур с оптимизацией в зоне до 1300 K на эмиттере,

снижение обратной эмиссии с поверхности коллектора,

отсутствие короткого замыкания при касании эмиттера и коллектора.

Пример реализации устройства (см. чертеж). На поверхность металлического коллектора из молибдена 4 со стороны межэлектродного зазора нанесен слой алмаза 3, легированного акцепторной примесью бора до 10(20) ат/см3, что обеспечивает вхождение уровня Ферми в валентную зону полупроводника. Эмиттер 1 выполнен из вольфрама, тонкий слой 2 выполнен из дырочного полупроводника. Межэлектродный зазор выполнен цезием при давлении около 1 тор. Температура эмиттера до 2000 K температура коллектора до 1000 K. Применение дырочного полупроводника на основе алмаза оправдано относительно других возможных решений его высокой стабильностью при высоких температурах [1, 2] При случайном касании электродов замыкание отсутствует из-за отсутствия электронной проводимости в дырочном полупроводнике. Перенос металла с эмиттера (или нанесение слоя при изготовлении) ограничивают радиусом Дебая [4]

Пример реализации устройства с натриевым (или цезиевым) бета -глиноземом. Устройство по фигуре имеет покрытие электродов из бета-глинозема. В условиях избытка кислорода и недостатка щелочного металла бета-глинозем [3, с. 72] приобретает свойства дырочного полупроводника. Рабочие температуры для глинозема проектно принимают до 1600 K. Пленка бета-глинозема 3 нанесена на коллектор 4. В межэлектродном зазоре имеется свободный кислород и малое количество щелочного металла, но достаточное для образования монослоя (пленочный электрод) на электродах. Кислород не соединяется с натрием (цезием) при температурах выше 800 K, что обеспечит покрытие эмиттера 1 пленкой щелочного металла. Отсутствие значимого давления паров щелочного металла в объеме ТЭП (очень низкое давление щелочного металла, область слева от минимума кривой Пашена) чрезвычайно важно для работы мощных батарей ТЭП, так как позволит поднять рабочее напряжение на батарее за счет высокого пробивного напряжения при низком давлении паров щелочного металла. Батареи с мощностью более 50 кВт требуют напряжение более 100 В, что невозможно достичь в парах цезия при давлении 1-3 тора, необходима "сухая электроизоляция". Применение глинозема и избыточного кислорода в ТЭП делает сухим слой изоляции ТЭП относительно корпуса батареи. Наличие щелочного пара с давлением около тора в ТЭП требует введения второго слоя сухой изоляции и радикально усложняет батарею ТЭП.

Ядерные энергетические установки.

Ядерные ракетные двигатели

Ядерные энергетические установки с термоэлектрическими генераторами

Начиная с начала шестидесятых годов, достаточно широкий размах в СССР, США и ряде других стран получили работы по новым способам получения электрической энергии и, в частности работы по непосредственному преобразованию тепловой энергии в электрическую на основе термоэлектрических и термоэмиссионных преобразователей.

Интерес к этим работам обусловлен тем, что подобные методы преобразования энергии принципиально упрощают схему установок, исключают промежуточные этапы превращения энергии и позволяют создать компактные и лёгкие энергетические установки.

Вместе с тем, использование ядерных источников энергии на космических аппаратах сопряжено с решением большого комплекса проблем обеспечения безопасности. Первый опыт решения этих проблем в нашей стране был получен при запуске в космос КА с радиоизотопными источниками энергии.

Разработка радиоизотопных генераторов проводилась в России с начала 60-х годов. В сентябре 1965 году впервые в России в составе двух связных КА "Стрела-1" (3.09.1965 г. - "Космос-84"; 18.09.1965 г. - "Космос-90") в космос были запущены радиоизотопные термоэлектрические генераторы (РИТЭГ) "Орион-1" электрической мощностью 20 Вт. Вес РИТЭГ составлял 14,8 кг, расчётный ресурс - 4 месяца. Ампулы РИТЭГ, содержащие полоний-210, были сконструированы в соответствии с принципом гарантированного сохранения целостности и герметичности при всех авариях. Этот принцип оправдал себя при авариях ракет-носителей в 1969 году, когда, несмотря на полное разрушение объектов, топливный блок, содержащий 25000 кюри полония-210, остался герметичным.

В последующие годы проводились работы, направленные на повышение мощности и ресурса РИТЭГ для луноходов и КА дальнего космоса. Разработанные конструкции РИТЭГ отличались между собой применяемыми изотопами, термоэлектрическими материалами, конструктивными формами и т.п. Это значительно усложняло и удорожало создание подобных ЭУ.

Сравнительно низкая энергоемкость, высокая стоимость РИТЭГ, сложности с решением проблем использования РИТЭГ в космосе, успехи в разработке ЭУ на основе ядерного реактора явились причиной прекращения работ по РИТЭГ для космоса.

Использование термоэлектрических и термоэмиссионных преобразователей энергии в сочетание с ядерными реакторами позволило создать принципиально новый тип установок, в которых источник тепловой энергии - ядерный реактор и преобразователь тепловой энергии в электрическую объединены в единый агрегат - реактор-преобразователь.

Для экспериментальной проверки возможности создания малогабаритного реактора-преобразователя с прямым преобразованием тепловой энергии в электрическую в СССР, в институте атомной энергии имени И.В.Курчатова в сотрудничестве с Сухумским физико-техническим институтом, Харьковским физико-техническим институтом, Подольским научно-исследовательским технологическим институтом в 1964 г. была сооружена и прошла полный цикл ядерных энергетических испытаний экспериментальная установка "Ромашка". Эта установка являлась высокотемпературным реактором-преобразователем на быстрых нейтронах, в котором тепло, выделяемое в активной зоне, передавалось за счёт теплопроводности материалов на расположенный на внешней поверхности отражателя термоэлектрический преобразователь, вырабатывавший до 500 Вт электрической энергии. Неиспользованное тепло с преобразователя излучалось в окружающее пространство ребристым холодильником-излучателем. Выведенный на мощность 14 августа 1964 года реактор-преобразователь "Ромашка" успешно проработал ~15000 часов, выработал при этом - 6100 кВт.час электроэнергии.

Пуск и успешные испытания установки "Ромашка" продемонстрировали, что в Советском Союзе впервые в мире создан работающий высокотемпературный ядерный реактор-преобразователь, который позволяет непосредственно получать электроэнергию без участия каких-либо движущихся рабочих тел и механизмов и экспериментально показана его способность к длительной работе. Последующие разделка и изучение состояния элементов установки "Ромашка" показали, что достигнутые параметры и ресурс не являются предельными и могут быть повышены за счёт некоторых усовершенствований конструкции и, в частности, использования вместо термоэлектрического преобразователя энергии плоских модульных термоэмиссионных элементов, располагаемых на границе активной зоны и радиального отражателя.

Выполненный комплекс работ с установкой "Ромашка" показал её абсолютную надёжность и безопасность. Однако, в связи с тем, что к моменту окончания испытаний была создана ядерная электрическая станция "БЭС-5" значительно большей мощности, дальнейшие испытания установки "Ромашка" были остановлены. На базе установки "Ромашка" была создана опытная установка "Гамма" - прототип автономной транспортируемой АЭС "Елена" электрической мощностью до 500 кВт, предназначенной для энергоснабжения отдаленных районов.

Ядерная энергетическая установка "БЭС-5".

Разработка первой в нашей стране космической ядерной электрической станции "БЭС-5" с гомогенным реактором на быстрых нейтронах и термоэлектрическим генератором (ТЭГ) проводилась в соответствии с Постановлениями ЦК КПСС и СМ СССР N 258-110 от 16.3.1961 г., N 702-295 от 3.7.1962 г. и N 651-244 от 24.8.1965 г. кооперацией организаций-разработчиков ГП "Красная Звезда", ГНЦ "ФЭИ", НТЦ"Исток" НИИ НПО "Луч", РНЦ "Курчатовский институт", ИПУ РАН и др. Станция разрабатывалась для электропитания аппаратуры космического аппарата радиолокационной разведки на участке выведения и в течение всего времени активного существования КА на круговой орбите высотой порядка 260 км. В результате проделанных расчётных, конструкторских и экспериментальных работ к 1970 году были практически решены все принципиальные проблемы по созданию "БЭС-5", генерирующей выходную мощность 2800 Вт, с ресурсом 1080 часов.

В период с 1963 г. по 1969 г. проводилась отработка жидкометаллического контура, испытания безреакторных образцов "БЭС-5" с имитатором ТЭГ и эксплуатационного оборудования, испытания безреакторной "БЭС-5" с действующим ТЭГ. В 1968-1970 г.г. были проведены натурные ресурсные испытания космических ядерных ЭУ "БЭС-5" N 16, 25, 32 с действующим реактором на стенде Ц-14Э. Испытания ядерной энергетической установки (ЯЭУ) N16 прошли успешно, все задачи, поставленные перед испытаниями, были выполнены в полном объёме. Электрическая мощность основной секции ТЭГ за время испытаний (1200 часов) снизилась на 10% и в конце испытаний составила 905 Вт и 1040 Вт при уровнях температуры 6900С и 7150С соответственно. Нейтронно-физические характеристики реактора, снятые на стационарных режимах работы, были стабильны во времени и удовлетворительно совпадали с расчётными значениями и величинами, экспериментально определенными на физических сборках в Физико-энергетическом институте.

Испытания ЯЭУ N25 были прекращены вследствие "закипания" теплоносителя первого контура в зоне реактора из-за недостаточного давления в компенсационных емкостях. После проведения тарировки автономного нейтронного источника по вновь разработанной методике с использованием новой высокоточной аппаратуры испытания "БЭС-5" были продолжены на установке N32. После успешного выхода на номинальный рабочий режим энергоустановки "БЭС-5" N32 на стенде Ц-14Э (ГП "Красная Звезда") был проведён полный цикл полигонных испытаний согласно программе ЛКИ ЯЭУ N31. Положительные результаты испытаний позволили в 3 октября 1970 г. осуществить запуск ЯЭУ "БЭС-5" N31 в составе КА радиолокационной разведки ("Космос-367").

ЯЭУ "БЭС-5" N 31 проработала на орбите 110 минут и была уведена на орбиту "захоронения" по причине "заброса" температуры 1-го контура выше предельно допустимой, вызванной расплавлением активной зоны реактора. По результатам первого запуска были доработаны датчики и логика работы температурного канала управления, а также снижена мощность "прогрева" ЯЭУ со 150% до 115% Nном.

В результате стендовых испытаний и ЛКИ были разработаны:

- надёжная технология сварки и последующего контроля изделия, в том числе термовакуумные испытания, что позволило обеспечить ресурсную отработку изделия до 1500 часов при расчётных температурах и окружающем давлении 10-5 мм.рт.ст. и в течении 1300 часов при работе в радиационных потоках, превышающие натурные;

- методика проведения имитационных (без реактора) тепловых испытаний изделия в вакуумных камерах;

- методика проведения наземных испытаний изделия со снаряженной активной зоной;

- методика проведения полигонных испытаний.

После проведения 9 запусков ЯЭУ "БЭС-5" в 1975 г. была принята на вооружение ВМФ СССР. Всего к мо-менту снятия с эксплуатации ЯЭУ "БЭС-5" (1989 г.) была запущена в космос 31 установка.

За весь период запусков КА с ЯЭУ на борту произошли три наиболее серьезные аварии.

При запуске КА с ЯЭУ "БЭС-5" N51, вследствие выхода из строя двигателя доразгона, КА не был выведен на расчётную орбиту и ЯЭУ с глубоко подкритичным реактором упала в Тихий океан.

Наиболее крупная авария ЯЭУ произошла с КА "Космос-954", запущенным 18 сентября 1977 года. Из-за разгерметизации приборного отсека КА с ЯЭУ "БЭС-5" N58 на борту и выхода из строя датчиков перепада давления второго контура произошёл отказ аппаратуры системы автономного управления, что привело к потере ориентации КА, непрохождению команды на увод ЯЭУ с Земли и отказу системы автоматического увода ЯЭУ. В результате КА с ЯЭУ вошёл в атмосферу и развалился, разбросав тысячи радиоактивных осколков на 100000 км2 в северо-западных районах Канады.

В 1983 году из-за отказа систем КА "Космос-1402", запущенного 30 августа 1982 года, произошло возвращение ЯЭУ в атмосферу Земли, что привело к срабатыванию дублирующей системы радиационной безопасности ЯЭУ, рассеявшей активную зону реактора в атмосфере Земли.

В апреле 1988 года произошла потеря радиосвязи с "Космосом-1900", запущенным 12 декабря 1987 года. Отсутствие связи помешало передать ему команду об уводе ЯЭУ, и до середины сентября 1987 года КА медленно терял высоту, постепенно приближаясь к Земле. К контролю за положением КА были привлечены службы контроля космического пространства США. Только 30 сентября за несколько дней до входа в плотные слои атмосферы, включилась защитная система и спутник был уведён на безопасную стационарную орбиту.

В процессе эксплуатации установки на основании Постановления ЦК КПСС и СМ СССР N 462-138 от 26.5.1975 г. проводились работы по её доработке и модернизации, связанные с повышением радиационной безопасности, увеличением электрической мощности в конце ресурса до 3 кВт и увеличением ресурса до 6-12 месяцев.

Анализ полётных данных показал, что прекращение работы КА с ЯЭУ на борту происходило, как правило, не по вине ЭУ, за исключением "БЭС-5" NN 31, 60, 58, 75 и 76. Анализ отрицательных явлений, имевшихся в процессе функционирования на орбите ЯЭУ (отказы датчиков давления и перепада давления в ЖМК "БЭС-5" N53 (15.5.1974 г., "Космос-651"), N60 (17.10.1976 г., "Космос-860"), N58 (18.09.1977 г., "Космос-954"), а также причин, их вызвавших, привел к необходимости их доработок. Так, начиная с ЯЭУ "БЭС-5" N58, были установлены усовершенствованные исполнительные механизмы привода компенсирующих стержней, антилюфтовые пружины в исполнительных механизмах привода регулирующих стержней, повышено давление газа в блоке гашения (БГ) реактора с 760 до 1500 мм рт.ст. Это позволило повысить надёжность срабатывания основной системы радиационной безопасности ЯЭУ, значительно снизить возмущения реактивности, вызываемые срабатыванием двигателей системы ориентации и стабилизации КА, уменьшить кратковременные выбросы тока ионизационных камер при перестройке задания по нейтронной мощности с 7,5% на 115%, а также более надёжно контролировать герметичность БГ при комплексных проверках на Земле (давление в БГ снижалось до нуля вследствие его негерметичности при выходе на орбиту ЯЭУ N52 (27.12.1973 г., "Космос-626") и N56 (7.04.1975 г., "Космос-724"). В 1985 г. аварийно закончилась работа двух КА вследствие отказов в системе автономного управления ЯЭУ "БЭС-5" N75 и N76 по причине более жёсткого теплового режима эксплуатации прибора ЭП-264. На оставшихся экземплярах ЯЭУ была произведена доработка прибора. После инцидента с КА "Космос-954" над Канадой интенсифицировались работы по бортовым системам обеспечения радиационной безопасности, как основной (ОСРБ), обеспечивающей "увод" ЯЭУ на орбиту "захоронения" высотой 890 км, так и дублирующей (ДСРБ), основанной на выбросе связки ТВЭЛов из корпуса реактора с помощью порохового аккумулятора давления поршневого типа и их последующим аэродинамическим разрушением.

Работоспособность бортовых устройств ДСРБ была подтверждена в наземных условиях и в процессе контрольно-лётных испытаний ЯЭУ N64, запущенной в составе КА "Космос-1176" 29 апреля 1980 года. Все последующие ЯЭУ "БЭС-5" были оснащены ДСРБ.

В связи с модернизацией КА радиолокационной разведки была произведена доработка ЯЭУ, отличающаяся увеличенным до 6 мес. сроком функционирования и электрической мощностью в конце ресурса 2400 Вт. Было изготовлено 3 экз. ЯЭУ. Первый запуск модернизированного варианта ЯЭУ был произведён 14 марта 1988 года в составе КА "Космос-1932". Несмотря на то, что установка нормально отработала по программе полёта дальнейшая эксплуатация ЯЭУ типа "БЭС-5" была прекращена. Оставшийся экземпляр ЯЭУ в 1993 году был доставлен с 5 НИИП на ГП "Красная Звезда" и утилизирован.

Принятие решения о прекращении запуска в космос КА с ЯЭУ на борту было вызвано сравнительно низкими техническими характеристиками ЯЭУ и обострившимся противостоянием международной общественности использованию ядерных объектов в космосе.

Ядерные энергетические установки с термоэмиссионными преобразователями

Ядерные энергетические установки "Топаз"

Параллельно работам по созданию ЯЭУ с термоэлектрическими генераторами проводились работы по ЯЭУ с термоэмиссионными преобразователями, имеющими более высокие технические характеристики.

Работы проводились двумя кооперациями организаций-исполнителей по двум типам установок, отличающихся:

- конструкцией основного элемента ЯЭУ - электрогенерирующего канала (ЭГК);

- конструкцией генератора паров рабочего тела (цезия). В ЯЭУ "Топаз-2" применён генератор фитильного типа, обеспечивающий постоянство расхода независимо от температуры теплоносителя;

ЯЭУ "Топаз-2" предназначена для использования только на радиационно-безопасных орбитах и не имеет системы ликвидации. Доработка её под дублирующую систему обеспечения радиационной безопасности не представляется возможной.

В установке "Топаз-1" (ТЭУ-5) с тепловым реактором-преобразователем и жидкометаллическим теплоносителем (Na-K) имеется 79 ЭГК в каждом из которых скоммутировано 5 термоэмиссионных электрогенерирующих элементов (ЭГЭ) (многоэлементный ЭГК), а в ЯЭУ "Топаз-2" (Енисей) - 37 ЭГК, в каждом из которых только один ЭГЭ (моноэлементный ЭГК).

Конструкция одноэлементного ЭГК позволяет не иметь в активной зоне межэлектродной коммутации, а также выводить газообразные продукты деления из катодного объёма, что предопределяет их большую надёжность и ресурсоспособность; используя тепловые имитаторы, контролировать электрические характеристики ЯЭУ перед стартом до загрузки ядерного топлива; отрабатывать полномасштабные ЭГК и системы преобразования термоэмиссионного реактора-преобразователя (ТРП) в целом с помощью электронагрева, что сокращает затраты средств и времени на экспериментальные работы. Однако одноэлементная конструкция имеет существенный недостаток, заключающийся в том, что при одних и тех же электрических мощностях ток на выходе одноэлементного ЭГК в 2-3 раза больше, чем у многоэлементного, и для снижения омических потерь требуются большие толщины электродов. Этот недостаток ЭГК одноэлементной конструкции в значительной мере определяется удельной электрической мощностью, снимаемой с поверхности катода, и практически в конкретных конструкциях начинает существенно сказываться при удельной электрической мощности выше 2 Вт/см2 для ТРП с замедлителем и более 5 Вт/см2 для ТРП на быстрых нейтронах.

ЯЭУ "Топаз-1" разрабатывалась в соответствии с постановлением ЦК КПСС и Совета Министров СССР N 702-295 от 3.07.1962 г. для КА радиолокационной разведки кооперацией организаций: головной разработчик - ГП "Красная Звезда", научный руководитель - ГНЦ "ФЭИ", соисполнители - НИИ НПО "Луч" и др.

ЯЭУ "Топаз-2" разрабатывалась в соответствии с постановлением ЦК КПСС и Совета Министров СССР N 715-240 от 21.07.1967 г. для КА системы непосредственного телевизионного вещания из космоса кооперацией организаций: головной разработчик - "Энерговак-ЦКБМ", научный руководитель - РНЦ "Курчатовский институт", соисполнители - НИИ НПО "Луч" и др.

При разработке ЯЭУ "Топаз-1" был выполнен большой комплекс экспериментальных исследований отдельных узлов, агрегатов, теплофизических прототипов ТРП и тепловых имитаторов установки в целом. В ГНЦ "ФЭИ" на реакторе АМ проведены испытания более 50 ЭГК, показавшие их работоспособность в течении заданного ресурса. Наибольшая продолжительность реакторных испытаний ЭГК штатной конструкции (КЭТ-49) составила более 5000 часов при средней удельной мощности 2,5 Вт/см2 и максимальной температуре катодов 16000С. Первые полномасштабные наземные энергетические испытания ядерного прототипа ЯЭУ "Топаз-1" были проведены на стенде ГНЦ "ФЭИ" в 1970 г. Изделие было выведено на электрическую мощность 10 кВт. Испытания продолжались 150 часов, после чего были приостановлены из-за утечки теплоносителя ЖМК. Всего были испытаны 4 ядерных прототипов ЯЭУ "Топаз-1".

Результаты наземных комплексных испытаний послужили основанием для определения в Решении Комиссии Президиума СМ СССР по ВПВ N 342 от 8.12.1976 г. возможного срока проведения лётно-конструкторских испытаний в 1979-1980 г.г. ЯЭУ "Топаз-1" в составе экспериментального КА "Плазма". Однако, отсутствие дублирующей системы радиационной безопасности в составе ЯЭУ привело к необходимости разработки новой модификации КА "Плазма" - КА "Плазма-А" и изменить, в соответствии с решением КП СМ СССР по ВПВ от 23.5.1981 г., сроки и условия проведения ЛКИ: проведение ЛКИ на высокой радиационно-безопасной орбите.

Решением Государственной комиссии при СМ СССР по ВПВ N 58 от 12.02.1986 г. было принято решение о проведении ЛКИ КА "Плазма-А" с ЯЭУ "Топаз-1". К проведению ЛКИ были подготовлены два экземпляра ЯЭУ (N22 и N23), отличающиеся материалом катодов ЭГК: катоды изделия N22 выполнены из молибдена, а N23 - из молибдена, покрытого вольфрамом.

ЯЭУ N22 была запущена на радиационно безопасную стационарную круговую орбиту высотой 800 км 2.02.1987 г. и отработала на орбите в составе КА "Плазма-А" ("Космос-1818") в течении 142 суток. Показано соответствие характеристик ЯЭУ в течении заданного трёхмесячного ресурса.

ЯЭУ N23 была запущена на радиационно безопасную стационарную круговую орбиту высотой 800 км 10.07.1987 г. и отработала на орбите в составе КА "Плазма-А" (Космос-1867) в течении 343 суток. Показано соответствие характеристик ЯЭУ в течении полугода работы. В дальнейшем в течении последующего полугода мощность ЯЭУ плавно снижалась вследствие деградационных процессов в РП, но была достаточна для питания всех систем КА (в конце стационарной работы составила 2,73 кВт).

Прекращение работы ЯЭУ в обоих случаях было вызвано, в основном, окончанием запасов рабочего тела (цезия) и выделением водорода из полости замедлителя, явившегося катализатором деградационных процессов в РП. Замена комплекта ЭГК с эмиттерными узлами из монокристаллического молибдена в ЯЭУ N22 на комплект ЭГК с вольфрамовыми покрытиями в ЯЭУ N23 привело к увеличению к.п.д. ЯЭУ в 1,05-1,07 раза.

Параллельно работам с ЯЭУ "Топаз-1" проводились работы по созданию ЯЭУ "Топаз-2". В ходе работ было изготовлено и испытано более 18 полномасштабных головных блоков энергоустановки, 7 из которых (Я-20, Я-23, Э-31, Я-24, Я-81, Я-82, Э-38) прошли ядерные энергетические испытания. Ресурсные ядерно-энергетические испытания первых опытных образцов (Я-20, Я-23, Э-31, Я-24) показали, что выбранная конструкция ЭГК не обеспечивает требований по ресурсу. Обнаружилось увеличение диаметра катодов ЭГК вследствие распухания тепловыделяющих сердечников под действием осколков деления, что привело к коротким замыканиям отдельных ЭГК в процессе испытаний и падению суммарной электрической мощности РП. Было также установлено, что вследствие поверхностных изменений свойств электродной пары катод-анод и увеличения приведенного коэффициента черноты ресурсное уменьшение электрической мощности ЭГК составило 3% за 1000 часов.

Для устранения перечисленных конструктивных недостатков НИИ НПО "Луч" был разработан и испытан усовершенствованный ЭГК, в котором были реализованы следующие конструктивные и технологические решения:

- в МЭЗ введены новые фиксаторы из окиси скандия, обладающие большей стойкостью в парах цезия по сравнению с фиксаторами из окиси алюминия;

- улучшена технология нанесения вольфрамового покрытия на эмиттер для предотвращения отслоения покрытия (переход на хлоридную технологию нанесения монокристалического покрытия);

- увеличено отверстие в топливе на всю длину активной зоны и увеличен диаметр отверстия для снижения распухания топлива;

- увеличен МЭЗ;

- в эмиттер введён монокристалл молибдена, легированного ниобием.

В процессе проведения тепловых испытаний с электронагревом одного из образцов усовершенствованного ЭГК достигнут ресурс более 22500 часов.

Кроме того, с целью доведения ресурса работы установки до 1,5 лет, была создана новая модернизированная конструкция реактора с увеличенным числом ЭГК в активной зоне (с 31 до 37). Было изготовлено 10 экземпляров головных блоков такой ЯЭУ (В-71 - для холодных и динамических испытаний с последующими электроэнергетическими испытаниями на комплексном стенде "Байкал-1"; Я-81, Э-37, Я-82 - для ЯЭИ продолжительностью до 1,5 лет; Э-39, Э-40, Э-41- для ЛКИ, Э-38-как резервный; Э-43, Э-44). При испытаниях образца Я-24 был достигнут небывалый в отечественной и зарубежной практике ресурс проведения ЯЭИ полномасштабного опытного образца космической ЯЭУ - 12500 часов.

В связи с прекращением работ по КА, для которого предназначалась ЯЭУ "Топаз-2", работы по ЯЭУ были прекращены на стадии наземных испытаний.

Российско-американское сотрудничество по ЯЭУ типа "Топаз".

Новым этапом в деятельности российских организаций явилось российско-американское сотрудничество в области космической ядерной энергетики.

Первые официальные материалы с краткой информацией об энергетической установке "БЭС-5" были переданы американской стороне в связи с инцидентом со спутником "Космос-954", имевшем место над Канадой в 1978 году, затем подробные сведения об установке передавались во время инцидентов со спутниками "Космос-1402" в 1983 г. и "Космос-1900" - в 1988 году.

Большой интерес у американских специалистов был вызван сообщениями академика Пономарева-Степнова Н.Н. и директора ГП "Красная Звезда" Грязнова Г.М. о результатах испытаний ЯЭУ "Топаз" на международном симпозиуме в г. Альбукерке (США) в 1989 г. А в апреле 1989 г. в ИАЭ им. И.В.Курчатова состоялись переговоры с представителями фирмы Space Power Inc. (SPI) советских разработчиков ЯЭУ (ИАЭ им. И.В.Курчатова, НПО "Красная Звезда", ЦКБМ, НПО "Луч", ФЭИ). Переговоры касались возможности сотрудничества в области космических ядерных энергетических установок для гражданского коммерческого применения и использования для этих целей имеющегося в СССР опыта и задела по созданию и натурным испытаниям космических термоэмиссионных ядерных энергетических установок. В процессе переговоров были обсуждены возможные области гражданского коммерческого использования таких ЯЭУ в качестве альтернативы солнечным энергоустановкам.

Переданные американской стороне материалы, связанные с успешными испытаниями в космосе ЯЭУ "Тополь" ("Топаз-1") в 1977-1978 гг., а также посещение американскими специалистами российских фирм убедили специалистов США в бесспорном приоритете России в этой области, в связи с чем ряд американских фирм проявили заинтересованность в научном и коммерческом использовании для мирных целей имеющегося в России задела по термоэмиссионным ЯЭУ.

В январе-марте 1991 г. был проведён демонстрационный показ макета ЯЭУ "Топаз-2" (без ядерного топлива) на VIII Симпозиуме США по космической ядерной энергетике (г. Альбукерк) и на советско-американском научно-техническом Симпозиуме и выставке "Наука-Космос-Конверсия" при Мерилендском университете. Демонстрация вызвала большой интерес специалистов и общественности, высоко оценена как с точки зрения технологических достижений СССР, так и готовности СССР участвовать в международном сотрудничестве в этой области.

Основные разработчики установки "Топаз-2" - ЦКБМ, РНЦ "КИ" и НИИ НПО "Луч" совместно с НИИТП и ГМП "НП Энерготех" с российской стороны и фирмой International Scientific Products (ISP) с американской стороны учредили Совместное российско-американское предприятие "Интернациональные энергетические технологии" (СП "ИНЕРТЕК"). На первом этапе своей деятельности было предложено провести демонстрационные испытания в США на стендах с электронагревом экспериментального образца и компонентов установки "Топаз-2" без ядерного топлива. Кабинетом Министров СССР (N ПП-15495 от 16.05.1991 г.) было дано согласие на проведение испытаний. Проведение работ было поддержано специальными решениями администрации США.

Для проведения испытаний американской стороне в период 1991-1992 года были переданы два образца головного блока ЯЭУ "Топаз-2" - В-71 (рабочий) и Я-21У (резервный), ранее испытанные в России, и испытательный стенд "Байкал".

Первый этап испытаний проводился в ноябре 1992 г. силами совместного предприятия "ИНЕРТЕК" по кон-тракту N СП-1145/5474, заключенному с ISP с участием специалистов группы TSET (Termionic System Evaluation Test). На стенде "Байкал" в г. Альбукерке (США) были проведены испытания изделия B-71 в объёме двух полных проверочных циклов "пуск-работа-останов" с целью подтверждения заданных параметров. Испытания образца установки и её отдельного ЭГК выполнены в полном объёме и успешно: подтверждена их работоспособность, получены характеристики, заданные Программой испытаний, проведено обучение американского персонала. "Проведенный прогноз полученных характеристик показал, что в штатных условиях установка "Топаз-2" с характеристиками В-71 может обеспечить электрическую мощность на клеммах рабочей секции реактора 4,5-6,0 кВт при температуре теплоносителя на выходе из реактора до 5700С" (из отчёта испытаний).

Целью второго этапа испытаний было получение экспериментальной информации по установке "Топаз-2" как объекта управления и источника электроэнергии при испытаниях с электронагревом в условиях вакуумной камеры и обучение американских специалистов. Испытания проводит группа TSET с участием российских специалистов, американских и российских исследователей.

После успешного проведения первого этапа работ американской стороной было предложено проведение подготовки лётных демонстрационных испытаний установки "Топаз-2" совместно с электродвигательным модулем на основе различного типа электрореактивных двигателей на космическом аппарате США и подписан контракт на участие российских предприятий в разработке космических ядерных термоэмиссионных установок повышенной (до 40 кВт) электрической мощности. Функционирование ЯЭУ должно быть осуществлено на высоких орбитах, на которых полностью гарантируется радиационная безопасность населению Земли. Финансирование этих работ будет осуществляется американской стороной из правительственных источников.

Для проведения лётных испытаний установки "Топаз-2" в составе американского космического аппарата разработчики установки в 1994-1995 г.г. поставили в США четыре экспериментальных образца установки "Топаз-2" (из них образцы Э-43, Э-44 - для лётных испытаний и Э-40, Э-41 для отработки стыковки с космическим аппаратом). Кроме этого, для наземных испытаний планируется использовать также поставленные ранее в США два экспериментальных образца установки "Топаз-2". Использование установок "Топаз-2" для лётных испытаний запланировано на условиях возврата (кроме запущенных в космос) установок "Топаз-2" после выполнения программы в Россию без разделки и исключения прямого использования установок в военных целях.

Несмотря на то, что в связи с резким сокращением финансирования работ в области космической ядерной энергетики были прекращены ОКР по созданию ЯЭУ, деятельность организаций-разработчиков с 1992 года направлена, в основном, на сохранение достигнутого научно-технического задела, стендовой базы и проведение работ по отработке основных элементов ЯЭУ. Вместе с тем, положительные результаты испытаний ЯЭУ "Топаз-1" и "Топаз-2" доказали принципиальную возможность создания в космосе энергетических систем мощностью 10-100 и более киловатт и положили начало разработкам проектов целого ряда термоэмиссионных установок мощностью 10-15, 25, 50 и 100-150 кВт.

Проекты космических ЯЭУ

В период создания ЯЭУ "БЭС" и "Топаз" на их основе было подготовлено ряд проектов установок с улучшенными характеристиками.

Эскизный проект на модифицированную установку ЯЭУ "Топаз-1" был разработан ГП "Красная Звезда" в соответствии с постановлением КП СМ СССР по ВПВ N 223 от 21.8.1974 г. Эта установка представляла собой форсированный вариант ЯЭУ "Топаз-1". Увеличение мощности достигнуто за счёт введения одного дополнительного ЭГК, применения индукционного электромагнитного насоса вместо кондукционного, введения охранных электродов в ЭГК. Установка в отличии от ЯЭУ "Топаз-1" была оснащена дублирующей системой обеспечения безопасности, холодильником-излучателем на тепловых трубах, замкнутой цезиевой системой с регенерацией цезия, оптимизированной схемой электрических коммутаций.

На основе разработок реактора "Ромашка" в 1976 "Энерговак-ЦКБМ" подготовлены технические предложения по термоэлектрической ЯЭУ "Заря-1" для КА оптико-электронной разведки (ОЭР). ЯЭУ "Заря-1" отличается от "БЭС" уровнем электрической мощности (5,8 кВт против 2,9 кВт) и повышенным ресурсом (4320 часов против 1100 часов).

Научно-технический задел в части создания ТЭГ и ТЭП для реакторных ЯЭУ позволил разработать в 1978 г. эскизный проект двух вариантов ЯЭУ "Заря-2" для КА ОЭР электрической мощностью 24 кВт и ресурсом 10000 часов. Включение в ЖМК термоэмиссионной ЯЭУ типа "Топаз-1" термоэлектрического генератора позволило решить проблему быстрого (через 10 минут после прохождения команды на пуск ЯЭУ) обеспечения электроэнергией аппаратуры КА и собственных потребностей установки по сравнению с временем выхода ЯЭУ "Топаз-1" на режим номинальной электрической мощности (через 60 мин.) Одновременно такое решение позволило снизить необходимую емкость аккумуляторных батарей, острый дефицит которой ощущался при создании "Топаз-1". Отличительной особенностью второго варианта ЯЭУ "Заря-2" является то, что высокая выходная мощность обеспечивается применением форсированных ЭГК с охранным электродом.

В 1978 г. ГП "Красная Звезда" разработаны технические предложения на 2 варианта космической ядерной энергодвигательной установки "Заря-3" электрической мощностью 24,4 кВт и ресурсом 1,15 года. Она предназначалась в числе других альтернативных вариантов для создания импульсов тяги коррекции орбиты КА ОЭР и энергообеспечения специальной аппаратуры. Первый вариант является модификацией ЯЭУ "Топаз-1" в части использования РП и ЭГК встроенного типа (аналогично РП установки "Заря-2") и автономного ЖРД. Другой вариант принципиально отличался от ЯЭУ "Топаз-1" наличием реактора на быстрых нейтронах, вынесенных ТЭП с тепловыми трубами и ЖРД, причём ТВЭЛы и ТЭПы были объединены в пароэлектрогенерирующие каналы.

Работы по установкам "Топаз" и "Заря" были прекращены из-за отсутствия их привязки к конкретному КА.

В период 1981-1986 г.г. в России был выполнен большой объём проектно-конструкторских и экспериментальных работ, свидетельствующий о принципиальной возможности увеличения ресурса ЯЭУ до 3-5 лет и электрической мощности до 600 кВт.

В результате этих проработок был разработан типоразмерный ряд термоэмиссионных РП на основе ЭГК прототипа ЭГК ЯЭУ "Топаз-1" мощностью 10-15, 25, 50 и 100-150 кВт.Разработка ядерных энергетических установок типа "Акация" и ядерного электроракетного двигателя "Геркулес"

ТЕРМОЭМИССИОННЫЕ ПРЕОБРАЗОВАТЕЛИ - ПУТЬ В ЭНЕРГЕТИКУ БУДУЩЕГО

Информационное агентство “ВРАТА-ЕКАТЕРИНБУРГ” распространила информацию о создании термоэмиссионного преобразователя тепловой энергии в электрическую (ТЭП) с очень высоким коэффициентом преобразования (КП) – до 80-82%. Вначале мне показалось это малоправдоподобным, но, заказав у разработчиков техническое описание преобразователя и ознакомившись с ним, автор сделал вывод о вполне реальной возможности достижения такого КП на практике, а в составе агрегата КП может достигать величины 95-97%.

Исходя из выше сказанного, мне хотелось бы порассуждать в этой статье о перспективных схемах применения ТЭП в традиционной и нетрадиционной энергетике.

При ныне существующей традиционной схеме энергообеспечения к каждому жилому объекту подводится несколько видов энергии: электроэнергия, теплоэнергия, сетевой газ, горячая вода.

Разместив на каждом жилом объекте микроТЭЦ на базе ТЭП мы перейдем к прогрессивной схеме децетрализованного энергообеспечения с высоким КИТ. Данная схема работает следующим образом: сетевой газ поступает в микроТЭЦ, где он сжигается во внешней топке. Нагретые в топке до температуры 1650-1700оС газы поступают в ТЭП, где происходит прямое преобразование тепловой энергии в электрическую (постоянного напряжения). Далее, охлажденные до температуры 250-300оС газы поступают в теплообменник, где нагревают холодную водопроводную воду для нужд горячего водоснабжения объекта. При этом 70-75% энергии газов расходуется на выработку электроэнергии и 25-20% - на производство горячей воды. Основная часть электроэнергии постоянного напряжения расходуется на отопление объекта, освещение, электроплиты, некоторые бытовые приборы, работающие на постоянном токе (например, холодильники), часть ее, пройдя через автономный инвертор, и, получив параметры стандартной сети, расходуется на бытовые приборы, работающие на переменном токе. В перспективе всю бытовую технику можно перевести на питание постоянным током, что значительно снизит вредное влияние на человека электромагнитного излучения. Для повышения надежности энергообеспечения необходимо иметь запас жидкого топлива или газгольдер с сжиженным газом. Убрав из квартир газопроводы и газовые плиты и разместив микроТЭЦ на крыше здания, можно резко увеличить безопасность использования сетевого газа.

Установка крышных микроТЭЦ на жилых объектах позволит подводить к ним только один вид энергоносителя – сетевой природный газ (в перспективе – водород), а сэкономленные деньги можно вложить в изготовление газопроводов из современных высокопрочных композитных материалов.

Теперь поговорим немного об экономике данного предложения.

Удельные капитальные затраты на автономную СИСТЕМУ энергообеспечения жилого объекта, включающую в себя ТЭП, теплообменник, инвертор, систему аварийного топливопитания, систему электроотопления и т.д. составят по прикидочным расчетам около

10 000 руб/кВт. Средняя отпускная цена на электроэнергию составит около 15 коп/кВтчас.

Удельные капитальные затраты на централизованную СИСТЕМУ энергообеспечения жилого объекта, включающую в себя цетрализованный источник тепловой энергии и горячей воды, теплотрассы, электрогенерирующие и трансформирующие объекты, ЛЭП и т.д. составят по некоторым данным по самым скромным прикидкам около 15 000 руб/кВт. Плата за электроэнергию для населения уже сейчас составляет от 30 до 60 коп за кВтчас, при этом эти деньги не покрывают не только полную отпускную цену, но даже себестоимость покрывают лишь частично.

Установка подобных автономных систем энергообеспечения на промышленных объектах также сулит значительную выгоду.

Если же оставить на жилых и промышленных объектах традиционную водяную систему отопления, а в микроТЭЦ на базе ТЭП установить гидродинамические преобразователи энергии с коэффициентом преобразования 300% и выше, то это позволит снизить топливные затраты на отопительные нужды в 2-2,5 раза и в целом расход газа на энергетические нужды в 3,5-4 раза.

Это, в свою очередь, увеличивает срок исчерпания природных запасов газа на десятки лет, что дает дополнительную временную фору ученым умам для разработки высокоэффективных нетрадиционных преобразователей энергии (солнце, физический вакуум и т.д.).

А теперь поговорим о применении ТЭП в нетрадиционной энергетике, а точнее в солнечной энергетике.

Современная солнечная энергостанция должна быть расположена на территории с максимальным по времени и мощности приходом солнечной энергии. Она преобразует солнечную энергию в электрическую, при помощи которой из воды получают водород и уже его по системе трубопроводов передают потребителям. Передача энергии в виде водорода, а не в виде электроэнергии становится выгоднее при расстояниях, превышающих 500-600 км.

Солнечная энергостанция состоит из большого числа энергетических модулей, каждый из которого состоит из модуля преобразования, электролизера и вспомогательного оборудования. Так как каждый энергетический модуль имеет законченный цикл производства водорода и небольшую цену, то строительство такой станции может начинаться с небольших инвестиций, постепенно наращивая свою производительность.

Каждый модуль преобразования в основном состоит из солнечного коллектора (ТВВК) с параболоцилиндрическими концентраторами, термоэмиссионного преобразователя (ТЭП) и циркуляционного вентилятора. Коэффициент преобразования такого модуля может достигать 70-75%. Тепловой коэффициент современных электролизеров достигает 95%, т.е общий КП энергетического модуля может достигать 70%.

Если сравнить показатели солнечной энергостанции на основе ТЭП и ТВВК с показателями солнечной энергостанции на основе кремниевых батарей, то выявится следующее: удельные капитальные затраты у первой станции на порядок меньше, чем у второй; площадь земли, занимаемая первой станцией в 5-6 раз меньше, чем второй.

Поскольку солнечные энергостанции имеют нестабильный цикл работы, то, естественно, встает вопрос о каком-либо способе аккумулирования водорода, чтобы обеспечить работу потребителя в ночное и пасмурное на территории энергостанции время. Сейчас ученые и инженеры активно разрабатывают различного рода водородные аккумуляторы. Я же хочу обратить ваше внимание на следующее: при передаче энергии в форме водорода будут использоваться трубопроводы большого сечения и большой протяженности. Сеть этих трубопроводов можно использовать для накопления водорода. Так трубопровод внутренним диаметром 1000 мм и протяженностью 1500 км при давлении 75 атм содержит около 8 000 тонн водорода, который может обеспечить в течение 24 часов работу энергообъектов, использующих ТЭП общей мощностью около 8 ГВт.

Исходя из того, что современные электролизеры допускают производство водорода при достаточно высоких давлениях (до 100 атм), то потребность в газовых компрессорах в начале газопровода отпадает. В качестве магистральных подкачивающих компрессорных станций можно рекомендовать металлогидридные термосорбционные компрессоры (МТСК). Их работа основана на способности металлогилдридов при низких температурах поглощать водород, а при умеренно высоких – выдавать водород при значительных давлениях. Например, при давлении 3 атм и комнатной температуре мишметалл довольно быстро поглощает водород, а при нагревании его до температуры 250-260оС водород может выдаваться уже при давлении около 100 атм. МТСК являются статическими аппаратами, в них нет движущихся частей, они выполняются абсолютно герметичными, что обеспечивает их высокую безопасность, надежность и экономичность.

Для некоторых штатов США среднегодовой приход солнечной энергии на каждый квадратный метр составляет 1500 кВтчасов, т.е. солнечная энергостанция с активной площадью 10 квадратных километров и КП=70% может выработать за год 10,5*109 кВтчасов электроэнергии или около 2,1 млн.тонн водорода. Для США идеальным местом расположения гелиоэнергостанции может служить так называемая “долина смерти” (360 дней в году – солнечные).

Для средней полосы России среднегодовой приход солнечной лучистой энергии на каждый квадратный метр по некоторым данным составляет 500 кВтчас, т.е. та же станция может выработать за год 3,5*109 кВтчасов электроэнергии или около 0,7 млн.тонн водорода. Для сравнения выработка электроэнергии в 2000 году АО “Кировэнерго” составила 3,56*109 кВтчасов, АО “Омскэнерго” – 6,198*109, АО “Ивэнерго” – 1,352*109.

Далее, выработанный на солнечных энергостанциях водород может подаваться по системе трубопроводов потребителям, которые могут его использовать для получения электроэнергии в ТЭПах, либо напрямую - в химических процессах

По мнению автора данная технология является весьма перспективной и альтернативной атомной энергетике.

И в заключении о возможном финансировании данного проекта. Первый, государственный, - за счет продажи части квот на выбросы СО2 в атмосферу ( в последнее время из-за снижения объемов производства Россия согласно Киотскому протоколу не использует эти квоты полностью).

Второй – частный. На первом этапе выполнения проекта ( производство небольших энергосистем индивидуального использования) грамотный инвестор даже без составления подробного экономического обоснования может увидеть высокую прибыльность этого производства.

Хотелось бы иметь скромную надежду на то, что Россия (в том числе и частный бизнесс) в очередной раз не наступит на одни и те же грабли - найдет способ профинансировать этот проект в необходимом объеме и не вынудит в очередной раз разработчиков продать эту технологию в и без того уже развитые страны, после чего будет вынуждена покупать в этих странах оборудование по этой технологии “втридорога”.

Соседние файлы в папке _не мой реферат